Joshua Moerman
8 years ago
1 changed files with 77 additions and 0 deletions
@ -0,0 +1,77 @@ |
|||||
|
{-# LANGUAGE NoMonomorphismRestriction #-} |
||||
|
|
||||
|
import Data.Discrimination |
||||
|
import Data.Maybe (fromJust) |
||||
|
import Prelude hiding (lookup) |
||||
|
import System.Environment (getArgs) |
||||
|
|
||||
|
-- Straight forward record type |
||||
|
data Machine s i o = Machine |
||||
|
{ states :: [s] |
||||
|
, inputs :: [i] |
||||
|
, output :: s -> o |
||||
|
, delta :: s -> i -> s |
||||
|
} |
||||
|
|
||||
|
-- Split states on their output. O(n) calls to output |
||||
|
-- and O(n) running time. Can work with any discrimination, |
||||
|
-- so eventually I might want :: Discriminating f => f o -> [s] -> (s -> o) -> [[s]] |
||||
|
-- just really is just the type of disc. |
||||
|
partitionOnOutput :: Grouping o => Machine s i o -> [[s]] |
||||
|
partitionOnOutput m = groupWith (output m) (states m) |
||||
|
|
||||
|
-- Split states on their transition, given a symbol |
||||
|
-- The input could be generalised to any function s -> s |
||||
|
-- Currently O(n^2) because of a wrong datastructure |
||||
|
-- Should be O(n) in future |
||||
|
tryRefine :: Eq s => Machine s i o -> i -> [[s]] -> [[s]] |
||||
|
tryRefine m i partition = concat $ map (groupWith d) partition |
||||
|
where |
||||
|
-- TODO: define efficient data structure for this |
||||
|
-- we want (amortized constant time?) State -> Int lookup |
||||
|
-- where the integer is determined by the block |
||||
|
-- I tried Map s Int and [(Set s, Int)], both were much slower :( |
||||
|
d s = lookup (delta m s i) indexedPartition |
||||
|
indexedPartition = zip partition [0 :: Int ..] |
||||
|
lookup x [] = undefined |
||||
|
lookup x ((ss,y):ys) = if elem x ss then y else lookup x ys |
||||
|
|
||||
|
-- Refine with all inputs once |
||||
|
refine :: Eq s => Machine s i o -> [[s]] -> [[s]] |
||||
|
refine m partition = foldl1 (.) (map (tryRefine m) (inputs m)) partition |
||||
|
|
||||
|
-- Refine until stable. In this case we stop depending on |
||||
|
-- the size of the machine. Ultimately we want to do this |
||||
|
-- by comparing the partitions (just by counting) |
||||
|
-- n*p calls to tryRefine, hence (in the future) O(pn^2) |
||||
|
moore :: (Eq s, Grouping o) => Machine s i o -> [[s]] |
||||
|
moore m = foldl1 (.) (replicate n r) acceptablePartition |
||||
|
where |
||||
|
r = refine m |
||||
|
n = length (states m) |
||||
|
acceptablePartition = partitionOnOutput m |
||||
|
|
||||
|
testMachine :: Int -> Machine Int Bool Bool |
||||
|
testMachine n = Machine [0..n] [False, True] (== 0) (\s i -> if i then s `div` 2 else s `div` 3) |
||||
|
|
||||
|
testMachine2 :: Int -> Machine Int Bool Bool |
||||
|
testMachine2 n = Machine (reverse [0..n]) [False, True] (== 0) (\s i -> if i then s `div` 2 else s `div` 3) |
||||
|
|
||||
|
hopcroftA :: Int -> Machine Int () Bool |
||||
|
hopcroftA n = Machine [1..n] [()] (==1) (\s _ -> if s > 1 then s-1 else s) |
||||
|
|
||||
|
hopcroftA2 :: Int -> Machine Int () Bool |
||||
|
hopcroftA2 n = Machine (reverse [1..n]) [()] (==1) (\s _ -> if s > 1 then s-1 else s) |
||||
|
|
||||
|
main = do |
||||
|
[n, machine] <- getArgs |
||||
|
case machine of |
||||
|
"hopcroftA" -> action $ hopcroftA (read n) |
||||
|
"hopcroftA2" -> action $ hopcroftA2 (read n) |
||||
|
"testMachine" -> action $ testMachine (read n) |
||||
|
"testMachine2" -> action $ testMachine2 (read n) |
||||
|
_ -> putStrLn $ "Unknown machine identifier " ++ machine |
||||
|
where |
||||
|
printAll = putStrLn . unlines . map show |
||||
|
printUneqs = print . length |
||||
|
action = printUneqs . moore |
Reference in new issue