Browse Source

added some text to see how it looks

master
Joshua Moerman 11 years ago
parent
commit
68985a4a75
  1. 24
      presentation/presentation.tex

24
presentation/presentation.tex

@ -1,4 +1,4 @@
\documentclass{beamer}
\documentclass[14pt]{beamer}
\usepackage[dutch]{babel}
@ -9,11 +9,14 @@
\usepackage{listings}
\newcommand{\id}{\text{id}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\cat}[1]{\mathbf{#1}}
\newcommand{\eps}{\varepsilon}
\newcommand{\I}{\,\mid\,}
\newcommand{\then}{\Rightarrow}
\newcommand{\inject}{\hookrightarrow}
\newcommand{\del}{\partial}
\title{Dold-Kan correspondentie}
\author{Joshua Moerman}
@ -26,23 +29,32 @@
\titlepage
\end{frame}
\begin{frame}
\frametitle{Dold-Kan Correspondentie}
\huge $$ \cat{Ch(Ab)} \simeq \cat{sAb} $$
\end{frame}
\section{Ketencomplex}
\begin{frame}
\frametitle{Ketencomplex}
\begin{definition}
$C_n \in \cat{Ab}$
Een \emph{ketencomplex} $C$ bestaat uit abelse groepen $C_n$ en homomorfismes $\del_n : C_{n+1} \to C_n$, zodat $\del_n \circ \del_{n+1} = 0$ voor alle $n \in \N$.
\end{definition}
\pause
Enzoverder
\bigskip
Met andere woorden:
$$ \cdots \to C_4 \to C_3 \to C_2 \to C_1 \to C_0 $$
\end{frame}
\begin{frame}
Uit $\del_n \circ \del_{n+1} = 0$ volgt $im(\del_{n+1}) \trianglelefteq ker(\del_n)$
\pause
Definieer: $H_n(C) = ker(\del_n) / im(\del_{n+1})$
\end{frame}
\begin{frame}
\begin{center}
\Huge Questions?
\Huge Vragen?
\end{center}
\end{frame}