added some text to see how it looks
This commit is contained in:
parent
1d0513f451
commit
68985a4a75
1 changed files with 18 additions and 6 deletions
|
@ -1,4 +1,4 @@
|
||||||
\documentclass{beamer}
|
\documentclass[14pt]{beamer}
|
||||||
|
|
||||||
\usepackage[dutch]{babel}
|
\usepackage[dutch]{babel}
|
||||||
|
|
||||||
|
@ -9,11 +9,14 @@
|
||||||
\usepackage{listings}
|
\usepackage{listings}
|
||||||
|
|
||||||
\newcommand{\id}{\text{id}}
|
\newcommand{\id}{\text{id}}
|
||||||
|
\newcommand{\N}{\mathbb{N}}
|
||||||
|
\newcommand{\Z}{\mathbb{Z}}
|
||||||
\newcommand{\cat}[1]{\mathbf{#1}}
|
\newcommand{\cat}[1]{\mathbf{#1}}
|
||||||
\newcommand{\eps}{\varepsilon}
|
\newcommand{\eps}{\varepsilon}
|
||||||
\newcommand{\I}{\,\mid\,}
|
\newcommand{\I}{\,\mid\,}
|
||||||
\newcommand{\then}{\Rightarrow}
|
\newcommand{\then}{\Rightarrow}
|
||||||
\newcommand{\inject}{\hookrightarrow}
|
\newcommand{\inject}{\hookrightarrow}
|
||||||
|
\newcommand{\del}{\partial}
|
||||||
|
|
||||||
\title{Dold-Kan correspondentie}
|
\title{Dold-Kan correspondentie}
|
||||||
\author{Joshua Moerman}
|
\author{Joshua Moerman}
|
||||||
|
@ -26,23 +29,32 @@
|
||||||
\titlepage
|
\titlepage
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}
|
||||||
|
\frametitle{Dold-Kan Correspondentie}
|
||||||
|
\huge $$ \cat{Ch(Ab)} \simeq \cat{sAb} $$
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
\section{Ketencomplex}
|
\section{Ketencomplex}
|
||||||
\begin{frame}
|
\begin{frame}
|
||||||
\frametitle{Ketencomplex}
|
\frametitle{Ketencomplex}
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
$C_n \in \cat{Ab}$
|
Een \emph{ketencomplex} $C$ bestaat uit abelse groepen $C_n$ en homomorfismes $\del_n : C_{n+1} \to C_n$, zodat $\del_n \circ \del_{n+1} = 0$ voor alle $n \in \N$.
|
||||||
\end{definition}
|
\end{definition}
|
||||||
\pause
|
\pause
|
||||||
Enzoverder
|
\bigskip
|
||||||
|
Met andere woorden:
|
||||||
|
$$ \cdots \to C_4 \to C_3 \to C_2 \to C_1 \to C_0 $$
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}
|
||||||
|
Uit $\del_n \circ \del_{n+1} = 0$ volgt $im(\del_{n+1}) \trianglelefteq ker(\del_n)$
|
||||||
|
\pause
|
||||||
|
Definieer: $H_n(C) = ker(\del_n) / im(\del_{n+1})$
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}
|
\begin{frame}
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\Huge Questions?
|
\Huge Vragen?
|
||||||
\end{center}
|
\end{center}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
|
|
Reference in a new issue