Joshua Moerman
12 years ago
9 changed files with 2661 additions and 12 deletions
After Width: | Height: | Size: 115 KiB |
After Width: | Height: | Size: 118 KiB |
@ -0,0 +1,47 @@ |
|||
\section{Simplicial Abelian Groups} |
|||
\label{sec:Simplicial Abelian Groups} |
|||
|
|||
\begin{definition} |
|||
We define a category $\DELTA$, where the objects are the finite ordinals $[n] = \{0, \dots, n\}$ and maps are monotone increasing functions. |
|||
\end{definition} |
|||
|
|||
There are two special kinds of maps in $\DELTA$, the so called \emph{face} and \emph{degeneracy} maps, defined as (resp.): |
|||
|
|||
$$\delta_i: [n] \to [n+1], k \mapsto \begin{cases} k & \text{if } k < i;\\ k+1 & \text{if } k \geq i. \end{cases} \hspace{0.5cm} 0 \leq i \leq n+1$$ |
|||
$$\sigma_i: [n+1] \to [n], k \mapsto \begin{cases} k & \text{if } k \leq i;\\ k-1 & \text{if } k > i. \end{cases} \hspace{0.5cm} 0 \leq i \leq n$$ |
|||
|
|||
for each $n \in \N$. The nice things about these maps is that every map in $\DELTA$ can be decomposed to a composition of these maps. So in a certain sense, these are all the maps we need to consider. We can now picture the category $\DELTA$ as follows. |
|||
|
|||
\begin{figure}[h!] |
|||
\label{fig:delta_cat} |
|||
\includegraphics{delta_cat} |
|||
\caption{The category $\DELTA$ with the face and degeneracy maps.} |
|||
\end{figure} |
|||
|
|||
\todo{sAb: Epi-mono factorization} |
|||
|
|||
Now the category $\sAb$ is defined as the category $\Ab^{\DELTA^{op}}$. Because the face and degeneracy maps give all the maps in $\DELTA$ it is sufficient to define images of $\delta_i$ and $\sigma_i$ in order to define a functor $F: \DELTA^{op} \to Ab$. And hence we can picture a simplicial abelian group as follows. |
|||
|
|||
\begin{figure} |
|||
\label{fig:simplicial_abelian_group} |
|||
\includegraphics{simplicial_abelian_group} |
|||
\caption{A simplicial abelian group.} |
|||
\end{figure} |
|||
|
|||
Of course the maps $\delta_i$ and $\sigma_i$ satisfy certain equations, these are the so called \emph{simplicial equations}. |
|||
\todo{sAb: Is \emph{simplicial equations} really a thing?} |
|||
|
|||
\begin{lemma} |
|||
The face and degeneracy maps in $\DELTA$ satisfy the simplicial equations, ie.: |
|||
\begin{align} |
|||
\delta_j\delta_i &= \delta_i\delta_{j-1} \hspace{0.5cm} \text{ if } i < j,\\ |
|||
\sigma_j\delta_i &= \delta_i\sigma_{j-1} \hspace{0.5cm} \text{ if } i < j,\\ |
|||
\sigma_j\delta_j &= \sigma_j\delta_{j+1} = \text{id},\\ |
|||
\sigma_j\delta_i &= \delta_{i-1}\sigma_j \hspace{0.5cm} \text{ if } i > j+1,\\ |
|||
\sigma_j\sigma_i &= \sigma_i\sigma_{j+1} \hspace{0.5cm} \text{ if } i \leq j. |
|||
\end{align} |
|||
\end{lemma} |
|||
\begin{proof} |
|||
By writing out the definitions given above. |
|||
\end{proof} |
|||
\todo{sAb: Say a bit more (because Mueger will not like this)} |
@ -0,0 +1,34 @@ |
|||
\documentclass[12pt]{amsproc} |
|||
|
|||
% a la fullpage |
|||
\usepackage{geometry} |
|||
\geometry{a4paper} |
|||
\geometry{twoside=false} |
|||
|
|||
% Activate to begin paragraphs with an empty line rather than an indent |
|||
\usepackage[parfill]{parskip} |
|||
\setlength{\marginparwidth}{2cm} |
|||
|
|||
\newtheorem{theorem}{Theorem}[section] |
|||
\newtheorem{definition}[theorem]{Definition} |
|||
\newtheorem{lemma}[theorem]{Lemma} |
|||
|
|||
\input{../thesis/preamble} |
|||
|
|||
\title{Dold-Kan Correspondence} |
|||
\author{Joshua Moerman} |
|||
|
|||
\begin{document} |
|||
\maketitle |
|||
|
|||
\begin{definition} |
|||
We define a category $\DELTA$, where the objects are the finite ordinals $[n] = \{0, \dots, n\}$ and maps are monotone increasing functions. |
|||
\end{definition} |
|||
|
|||
$$ [0] \to [1] \to [2] \to [3] \to \ldots $$ |
|||
$$\delta_i: [n] \to [n+1], k \mapsto \begin{cases} k & \text{if } k < i;\\ k+1 & \text{if } k \geq i. \end{cases} \hspace{0.5cm} 0 \leq i \leq n+1$$ |
|||
$$\sigma_i: [n+1] \to [n], k \mapsto \begin{cases} k & \text{if } k \leq i;\\ k-1 & \text{if } k > i. \end{cases} \hspace{0.5cm} 0 \leq i \leq n$$ |
|||
|
|||
$$ A_0 \to A_1 \to A_2 \to A_3 $$ |
|||
|
|||
\end{document} |
Reference in new issue