Thesis: added example D[0] and D[1]
This commit is contained in:
parent
11b2206a75
commit
f050a2e977
2 changed files with 61 additions and 3 deletions
|
@ -91,8 +91,60 @@ Of course the abstract definition of simplicial abelian group can easilty be gen
|
|||
$$\Delta[n] = \Hom{\DELTA}{-}{[n]} : \DELTA^{op} \to \Set.$$
|
||||
\end{definition}
|
||||
|
||||
Note that indeed $\Hom{\DELTA}{X}{[n]} \in \Set$, because the collection of morphisms in a category is per definition a set. We do not need to specify the face or degeneracy maps, as we already know that $\mathbf{Hom}$ is a functor (in both arguments).
|
||||
Note that indeed $\Hom{\DELTA}{X}{[n]} \in \Set$, because the collection of morphisms in a category is per definition a set. We do not need to specify the face or degeneracy maps, as we already know that $\mathbf{Hom}$ is a functor (in both arguments). Still it is useful to write out some cases.
|
||||
|
||||
\todo{sAb: as example do $\Delta[n]$}
|
||||
\todo{sAb: as example do the free abelian group pointwise}
|
||||
\begin{example}
|
||||
We will compute how $\Delta[0]$ look like. Note that $[0]$ is an one-element set, so for any set $X$, there is only one function $\ast : X \to [0]$. Hence $\Delta[0]_n = \{\ast\}$ for all $n$. The face and degeneracy maps are now functions from $\{\ast\}$ to $\{\ast\}$. Again there is only one, namely $\id : \{\ast\} \to \{\ast\}$. This gives:
|
||||
\todo{sAb: insert picture}
|
||||
\end{example}
|
||||
|
||||
\begin{example}
|
||||
$\Delta[1]$ is a bit more interesting, but still not too hard. We will compute the first three abelian groups $\Delta[1]_0$, $\Delta[1]_1$ and $\Delta[1]_2$. We can use the fact that any monotone increasing map $f: [n] \to [m]$ is a composition of first applying degeneracy maps, and then face maps, ie.: $f: [n] \tot{\sigma^{i_0} \cdots \sigma^{i_M}} [k] \tot{\delta^{j_0} \cdots \delta^{j_N}} [m]$, where $k \leq m, n$.
|
||||
|
||||
For $\Delta[1]_0$ we have to consider maps from $[0]$ to $[1]$, we cannot first apply degeneracy maps (there is no object $[-1]$). So this leaves us with the face maps: $\Delta[1]_0 = \{\delta_0, \delta_1\}$. For $\Delta[1]_1$ we of course have the identity function and two functions $\delta_0\sigma_0, \delta_1\sigma_0$. Now $\Delta[1]_2$ are the maps from $[2]$ to $[1]$.
|
||||
|
||||
We will compute the two face maps $\delta^0$ and $\delta^1$ from $\Delta[1]_1$ to $\Delta[1]_0$. Recall that the $\mathbf{Hom}$-functor in the first argument (the contravariant argument) works with precomposition. So this gives:
|
||||
\begin{align*}
|
||||
\delta^0(id) &= \id \delta_0 = \delta_0 \\
|
||||
\delta^0(\delta_0\sigma_0) &= \delta_0 \sigma_0 \delta_0 = \delta_0 \\
|
||||
\delta^0(\delta_1\sigma_0) &= \delta_0 \sigma_0 \delta_0 = \delta_1.
|
||||
\end{align*}
|
||||
Where we in the first calculation used the identity law. In the second and third line we used the third simplicial equation, asserting that $\sigma_0 \delta_0 = \id$. Similarly we can calculate the face map $\delta^1$:
|
||||
\begin{align*}
|
||||
\delta^1(id) &= \id \delta_1 = \delta_1 \\
|
||||
\delta^1(\delta_0\sigma_0) &= \delta_0 \sigma_0 \delta_1 = \delta_0 \\
|
||||
\delta^1(\delta_1\sigma_0) &= \delta_0 \sigma_0 \delta_1 = \delta_1.
|
||||
\end{align*}
|
||||
\end{example}
|
||||
|
||||
As we are interested in simplicial abelian group, it would be nice to make these $n$-simplices into simplicial abelian groups. We have seen how to make an abelian group out of any set using the free abelian group. We can use this functor $\Z[-] : \Set \to \Ab$ to induce a functor $\Z^\ast[-] : \sSet \to \sAb$ as shown in the diagram~\ref{fig:diagram_Z}.
|
||||
\begin{figure}
|
||||
\begin{tikzpicture}
|
||||
\matrix (m) [matrix of math nodes]{
|
||||
\DELTA^{op} & \Set \\
|
||||
& \Ab \\
|
||||
};
|
||||
\path[->]
|
||||
(m-1-1) edge node[auto] {$ X $} (m-1-2)
|
||||
(m-1-2) edge node[auto] {$ \Z[-] $} (m-2-2)
|
||||
(m-1-1) edge node[auto] {$ X' $} (m-2-2);
|
||||
\end{tikzpicture}
|
||||
\caption{The simplicial set $X$ can be made into a simplicial abelian group $X'$ by postcomposing with $\Z[-]$}
|
||||
\label{fig:diagram_Z}
|
||||
\end{figure}
|
||||
|
||||
\begin{example}
|
||||
We can apply this to the standard $n$-simplex $\Delta[1]$. This gives $\Delta[1]_0 \iso \Z^2$, since $\Delta[1]_0$ had two elements, and $\Delta[1]_1 \iso \Z^3$, where the isomorphisms are taken such that:
|
||||
\begin{align*}
|
||||
\delta_0 &\mapstot{\iso} (1, 0) \\
|
||||
\delta_1 &\mapstot{\iso} (0, 1) \\
|
||||
\delta_0\sigma_0 &\mapstot{\iso} (1, 0, 0) \\
|
||||
\id &\mapstot{\iso} (0, 1, 0) \\
|
||||
\delta_1\sigma_0 &\mapstot{\iso} (0, 0, 1)
|
||||
\end{align*}
|
||||
The face maps from $\Delta[1]_1$ to $\Delta[1]_0$ under these isomorphisms are then given by:
|
||||
\begin{align*}
|
||||
\delta^0(x, y, z) &= (x+y, z) \\
|
||||
\delta^1(x, y, z) &= (x, y+z)
|
||||
\end{align*}
|
||||
\end{example}
|
||||
|
|
|
@ -3,6 +3,11 @@
|
|||
\usepackage{amssymb}
|
||||
\usepackage{color}
|
||||
\usepackage{listings}
|
||||
\usepackage{mathtools}
|
||||
|
||||
\usepackage{tikz} % http://pdp7.org/blog/?p=133
|
||||
\usetikzlibrary{matrix,arrows}
|
||||
\tikzset{node distance=3em, row sep=3em, column sep=3em, auto}
|
||||
|
||||
\newcommand{\N}{\mathbb{N}}
|
||||
\newcommand{\Z}{\mathbb{Z}}
|
||||
|
@ -20,6 +25,7 @@
|
|||
|
||||
\newcommand{\iso}{\cong}
|
||||
\newcommand{\tot}[1]{\xrightarrow{\,\,{#1}\,\,}}
|
||||
\newcommand{\mapstot}[1]{\xmapsto{\,\,{#1}\,\,}}
|
||||
\newcommand{\eps}{\varepsilon}
|
||||
\newcommand{\I}{\,\mid\,}
|
||||
\newcommand{\then}{\Rightarrow}
|
||||
|
|
Reference in a new issue