\documentclass[14pt]{beamer} % beamer definieert 'definition' al, maar dan engels :( % fix van: % http://tex.stackexchange.com/questions/38392/how-to-rename-theorem-or-lemma-in-beamer-to-another-language \usepackage[dutch]{babel} \uselanguage{dutch} \languagepath{dutch} \deftranslation[to=dutch]{Definition}{Definitie} \usepackage{array} \input{../thesis/preamble} \graphicspath{ {../presentation/images/} } \title{Dold-Kan correspondentie \huge $$ \Ch{\cat{Ab}} \simeq \cat{sAb} $$} \author{Joshua Moerman} \institute[Radboud Universiteit Nijmegen]{Begeleid door Moritz Groth} \date{} \begin{document} \begin{frame} \titlepage \end{frame} \begin{frame} \frametitle{Wat is $\Ch{\cat{Ab}}$?} \begin{definition} Een \emph{ketencomplex} $C$ bestaat uit abelse groepen met groepshomomorfisme: $$ \cdots \to C_4 \tot{\del_3} C_3 \tot{\del_2} C_2 \tot{\del_1} C_1 \tot{\del_0} C_0 $$ zodat $\del_n \circ \del_{n+1} = 0$ voor alle $n \in \N$. \end{definition} \end{frame} \begin{frame} \frametitle{Voorbeeld} \centering \vspace{-0.5cm} Bekijk $\Delta^n \tot{f} X$,\, dwz.\, \raisebox{-.2\height}{\includegraphics{simplex_in_X}} \bigskip \bigskip \includegraphics<1>{singular_chaincomplex1} \includegraphics<2>{singular_chaincomplex2} \includegraphics<3>{singular_chaincomplex3} \end{frame} \begin{frame} \frametitle{Interessant?} Gegeven een ketencomplex $C$: \\ $ \cdots \tot{\del_2} C_2 \tot{\del_1} C_1 \tot{\del_0} C_0 $ met $\del_n \circ \del_{n+1} = 0$ \bigskip\bigskip Dan geldt $im(\del_{n+1}) \trianglelefteq ker(\del_n)$ Definieer: $H_n(C) = ker(\del_{n-1}) / im(\del_n)$ met $ker(\del_{-1}) = C_0$ \end{frame} \begin{frame} \frametitle{Voorbeeld} \raisebox{-.2\height}{\includegraphics[width=0.7\textwidth]{singular_chaincomplex_small}}, $ H_1 = \frac{ker(\del_0)}{im(\del_1)} $? \bigskip \begin{tabular}{m{0.3\textwidth} m{0.7\textwidth}} \includegraphics<1>{singular_homology1} \includegraphics<2->{singular_homology2} & $\sigma_1 - \sigma_2 + \sigma_3 \in ker (\del_0) $ \newline \visible<2->{$\del_1(\tau) = \sigma_1 - \sigma_2 + \sigma_3 $ \newline Dus $ \sigma_1 + \sigma_2 - \sigma_3 \in im (\del_1) $ \newline Dus $ 0 = [\sigma_1 - \sigma_2 + \sigma_3] \in H_1 $} \end{tabular} \bigskip \visible<3->{ \begin{tabular}{m{0.3\textwidth} m{0.7\textwidth}} \includegraphics{singular_homology3} & $ \sigma_1 - \sigma_2 + \sigma_3 \in ker (\del_0) $ \newline Maar $ \sigma_1 - \sigma_2 + \sigma_3 \not \in im (\del_1) $ \newline Dus $ 0 \neq [\sigma_1 - \sigma_2 + \sigma_3] \in H_1 $ \end{tabular} } \end{frame} \begin{frame} \frametitle{Dold-Kan Correspondentie} \begin{center} {\Large $ \Ch{\cat{Ab}} \simeq \cat{sAb} $} verder: {\Large $$ H_n(N(X)) \iso \pi_n(X) $$} waarbij $N : \cat{sAb} \tot{\simeq} \Ch{\cat{Ab}}$. \end{center} \end{frame} \begin{frame} \begin{center} \Huge Vragen? \end{center} \end{frame} \end{document}