\section{Simplicial Abelian Groups} \label{sec:Simplicial Abelian Groups} \begin{definition} We define a category $\DELTA$, where the objects are the finite ordinals $[n] = \{0, \dots, n\}$ and maps are monotone increasing functions. \end{definition} There are two special kinds of maps in $\DELTA$, the so called \emph{face} and \emph{degeneracy} maps, defined as (resp.): $$\delta_i: [n] \to [n+1], k \mapsto \begin{cases} k & \text{if } k < i;\\ k+1 & \text{if } k \geq i. \end{cases} \hspace{0.5cm} 0 \leq i \leq n+1$$ $$\sigma_i: [n+1] \to [n], k \mapsto \begin{cases} k & \text{if } k \leq i;\\ k-1 & \text{if } k > i. \end{cases} \hspace{0.5cm} 0 \leq i \leq n$$ for each $n \in \N$. The nice things about these maps is that every map in $\DELTA$ can be decomposed to a composition of these maps. So in a certain sense, these are all the maps we need to consider. We can now picture the category $\DELTA$ as follows. \begin{figure}[h!] \label{fig:delta_cat} \includegraphics{delta_cat} \caption{The category $\DELTA$ with the face and degeneracy maps.} \end{figure} \todo{sAb: Epi-mono factorization} Now the category $\sAb$ is defined as the category $\Ab^{\DELTA^{op}}$. Because the face and degeneracy maps give all the maps in $\DELTA$ it is sufficient to define images of $\delta_i$ and $\sigma_i$ in order to define a functor $F: \DELTA^{op} \to Ab$. And hence we can picture a simplicial abelian group as follows. \begin{figure} \label{fig:simplicial_abelian_group} \includegraphics{simplicial_abelian_group} \caption{A simplicial abelian group.} \end{figure} Of course the maps $\delta_i$ and $\sigma_i$ satisfy certain equations, these are the so called \emph{simplicial equations}. \todo{sAb: Is \emph{simplicial equations} really a thing?} \begin{lemma} The face and degeneracy maps in $\DELTA$ satisfy the simplicial equations, ie.: \begin{align} \delta_j\delta_i &= \delta_i\delta_{j-1} \hspace{0.5cm} \text{ if } i < j,\\ \sigma_j\delta_i &= \delta_i\sigma_{j-1} \hspace{0.5cm} \text{ if } i < j,\\ \sigma_j\delta_j &= \sigma_j\delta_{j+1} = \text{id},\\ \sigma_j\delta_i &= \delta_{i-1}\sigma_j \hspace{0.5cm} \text{ if } i > j+1,\\ \sigma_j\sigma_i &= \sigma_i\sigma_{j+1} \hspace{0.5cm} \text{ if } i \leq j. \end{align} \end{lemma} \begin{proof} By writing out the definitions given above. \end{proof} \todo{sAb: Say a bit more (because Mueger will not like this)}