\documentclass[12pt]{amsproc} % a la fullpage \usepackage{geometry} \geometry{a4paper} \geometry{twoside=false} % Activate to begin paragraphs with an empty line rather than an indent \usepackage[parfill]{parskip} \setlength{\marginparwidth}{2cm} \newtheorem{theorem}{Theorem}[section] \newtheorem{definition}[theorem]{Definition} \newtheorem{lemma}[theorem]{Lemma} \input{../thesis/preamble} \title{Dold-Kan Correspondence} \author{Joshua Moerman} \begin{document} \maketitle \begin{definition} We define a category $\DELTA$, where the objects are the finite ordinals $[n] = \{0, \dots, n\}$ and maps are monotone increasing functions. \end{definition} $$ [0] \to [1] \to [2] \to [3] \to \ldots $$ $$\delta_i: [n] \to [n+1], k \mapsto \begin{cases} k & \text{if } k < i;\\ k+1 & \text{if } k \geq i. \end{cases} \hspace{0.5cm} 0 \leq i \leq n+1$$ $$\sigma_i: [n+1] \to [n], k \mapsto \begin{cases} k & \text{if } k \leq i;\\ k-1 & \text{if } k > i. \end{cases} \hspace{0.5cm} 0 \leq i \leq n$$ $$ A_0 \to A_1 \to A_2 \to A_3 $$ \end{document}