Bachelor thesis about the Dold-Kan correspondence
https://github.com/Jaxan/Dold-Kan
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
34 lines
1.0 KiB
34 lines
1.0 KiB
\documentclass[12pt]{amsproc}
|
|
|
|
% a la fullpage
|
|
\usepackage{geometry}
|
|
\geometry{a4paper}
|
|
\geometry{twoside=false}
|
|
|
|
% Activate to begin paragraphs with an empty line rather than an indent
|
|
\usepackage[parfill]{parskip}
|
|
\setlength{\marginparwidth}{2cm}
|
|
|
|
\newtheorem{theorem}{Theorem}[section]
|
|
\newtheorem{definition}[theorem]{Definition}
|
|
\newtheorem{lemma}[theorem]{Lemma}
|
|
|
|
\input{../thesis/preamble}
|
|
|
|
\title{Dold-Kan Correspondence}
|
|
\author{Joshua Moerman}
|
|
|
|
\begin{document}
|
|
\maketitle
|
|
|
|
\begin{definition}
|
|
We define a category $\DELTA$, where the objects are the finite ordinals $[n] = \{0, \dots, n\}$ and maps are monotone increasing functions.
|
|
\end{definition}
|
|
|
|
$$ [0] \to [1] \to [2] \to [3] \to \ldots $$
|
|
$$\delta_i: [n] \to [n+1], k \mapsto \begin{cases} k & \text{if } k < i;\\ k+1 & \text{if } k \geq i. \end{cases} \hspace{0.5cm} 0 \leq i \leq n+1$$
|
|
$$\sigma_i: [n+1] \to [n], k \mapsto \begin{cases} k & \text{if } k \leq i;\\ k-1 & \text{if } k > i. \end{cases} \hspace{0.5cm} 0 \leq i \leq n$$
|
|
|
|
$$ A_0 \to A_1 \to A_2 \to A_3 $$
|
|
|
|
\end{document}
|
|
|