Bachelor thesis about the Dold-Kan correspondence https://github.com/Jaxan/Dold-Kan
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
 
 

102 lines
3.4 KiB

\documentclass[titlepage, 11pt]{amsproc}
% a la fullpage
\usepackage{geometry}
\geometry{a4paper}
\geometry{twoside=false}
% Activate to begin paragraphs with an empty line rather than an indent
\usepackage[parfill]{parskip}
\setlength{\marginparwidth}{2cm}
% toc/refs clickable
\usepackage{hyperref}
\usepackage{float}
\theoremstyle{plain}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{corollary}[theorem]{Corollary}
\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\input{../thesis/preamble}
\graphicspath{ {../thesis/images/} }
\usepackage{wallpaper}
\title{Dold-Kan Correspondence}
\author{Joshua Moerman}
\date{\today}
\begin{document}
\begin{titlepage}
\ThisCenterWallPaper{1.0}{bgtitlepage}
\centering
\vspace{10cm}
\includegraphics[scale=0.2]{ru}\\
\textsc{Radboud University Nijmegen}
\vspace{3cm}
{\huge \bfseries \makeatletter\@title\makeatother}\\
\vspace{0.3cm}
Bachelor Thesis in Mathematics
\vspace{3cm}
\begin{minipage}{0.4\textwidth}
\begin{flushleft} \large
\emph{Author:}\\
Joshua Moerman\\
3009408
\end{flushleft}
\end{minipage}
\begin{minipage}{0.4\textwidth}
\begin{flushright} \large
\emph{Supervisor:} \\
Moritz Groth
\end{flushright}
\end{minipage}
\vfill
\makeatletter\@date\makeatother
\end{titlepage}
\section*{Contents}
\renewcommand\contentsname{}
\tableofcontents
\section*{Introduction}
In this thesis we will study the Dold-Kan correspondence, a celebrated result which belongs to the field of homological algebra or simplicial homotopy theory. Abstractly, one version of the theorem states that there is an equivalence of categories
$$ K: \Ch{\Ab} \simeq \sAb :N, $$
where $\Ch{\Ab}$ is the category of chain complexes and $\sAb$ is the category of simplicial abelian groups. This theorem was discovered by A.~Dold \cite{dold} and D.~Kan \cite{kan} independently in 1957. Objects of either of these categories have important invariants. A more refined statement of this equivalence tells us that there is an natural isomorphism between homology groups of chain complexes and homotopy groups of simplicial abelian groups. A bit more precise:
$$ \pi_n(A) \iso H_n(N(A)) \text{ for all } n \in \N. $$
In the first section some definitions from category theory are recalled, which are especially important in Sections~\ref{sec:Simplicial Abelian Groups} and \ref{sec:Constructions}. In Section~\ref{sec:Chain Complexes} we will discuss the category of chain complexes and in the end of this section a motivation from algebraic topology will be given for these objects. Section~\ref{sec:Simplicial Abelian Groups} then continues with the second category involved, $\sAb$. This section start with a slightly more general notion and it will be illustrated to have a geometrical meaning. In Section~\ref{sec:Constructions} the correspondence will be defined and proven. In the last section (Section~\ref{sec:Homotopy}) the refined statement will be proven and in the end some more general notes about topology and homotopy will be given, justifying once more the beauty of this correspondence.
\newpage
\input{../thesis/1_CategoryTheory}
\newpage
\input{../thesis/2_ChainComplexes}
\newpage
\input{../thesis/3_SimplicialAbelianGroups}
\newpage
\input{../thesis/4_Constructions}
\newpage
\input{../thesis/5_Homotopy}
\newpage
\listoftodos
\nocite{*}
\bibliographystyle{alpha}
\bibliography{references}
\end{document}