Added Automata :D
This commit is contained in:
parent
b26e5d4b5b
commit
b5e9aca237
3 changed files with 67 additions and 10 deletions
56
Automata.hs
Normal file
56
Automata.hs
Normal file
|
@ -0,0 +1,56 @@
|
||||||
|
{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances, FlexibleContexts, TypeOperators, ScopedTypeVariables, OverlappingInstances #-}
|
||||||
|
|
||||||
|
import Control.Monad.Instances
|
||||||
|
import Control.Compose
|
||||||
|
import Coalgebra
|
||||||
|
|
||||||
|
-- F X = 2 x X^A, for some fixed alphabet A
|
||||||
|
type F a = (,) Bool `O` ((->) a)
|
||||||
|
|
||||||
|
-- Fixpoint, ie languages
|
||||||
|
type Language a = Mu (F a)
|
||||||
|
|
||||||
|
-- basic constructor
|
||||||
|
ctor :: Bool -> (a -> Language a) -> Language a
|
||||||
|
ctor b t = phi (O (b, t))
|
||||||
|
|
||||||
|
-- For every (F a)-coalgebra x, there is a arrow x -> Language a
|
||||||
|
-- and it is unique, so `Language a` is the final (F a)-coalgebra!
|
||||||
|
sem :: (Coalgebra (F a) x) => x -> Language a
|
||||||
|
sem s = ctor b (\w -> sem $ trans w) where O (b, trans) = psi s
|
||||||
|
|
||||||
|
-- auciliry function
|
||||||
|
is_member :: [a] -> Language a -> Bool
|
||||||
|
is_member [] l = b where O (b, _) = psi l
|
||||||
|
is_member (a:r) l = is_member r (trans a) where O (_, trans) = psi l
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
-- Our alphabet
|
||||||
|
data A = A | B
|
||||||
|
deriving Show
|
||||||
|
|
||||||
|
-- Our example automaton, we will look at its language given by sem
|
||||||
|
data X = One | Two | Three
|
||||||
|
trans :: X -> A -> X
|
||||||
|
trans One A = Two
|
||||||
|
trans One B = Three
|
||||||
|
trans Two A = Three
|
||||||
|
trans Two B = One
|
||||||
|
trans Three _ = Three
|
||||||
|
|
||||||
|
fin :: X -> Bool
|
||||||
|
fin One = True;
|
||||||
|
fin Two = True;
|
||||||
|
fin _ = False;
|
||||||
|
|
||||||
|
instance Coalgebra (F A) X where
|
||||||
|
psi x = O (fin x, trans x)
|
||||||
|
|
||||||
|
|
||||||
|
-- Test a word against it
|
||||||
|
show_member word = putStrLn $ show (word, is_member word (sem One :: Language A))
|
||||||
|
|
||||||
|
main = do
|
||||||
|
let words = [[A], [A,B], [A,B,B], [A,B,B,A], [A,B,A,B,A]]
|
||||||
|
sequence $ map show_member words
|
10
Coalgebra.hs
10
Coalgebra.hs
|
@ -1,13 +1,13 @@
|
||||||
{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances #-}
|
{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances, FunctionalDependencies #-}
|
||||||
module Coalgebra where
|
module Coalgebra where
|
||||||
|
|
||||||
import Control.Monad
|
import Control.Monad.Instances
|
||||||
|
|
||||||
-- Definitions for (co)algebras
|
-- Definitions for (co)algebras, adding fundeps helped in the Automata case...
|
||||||
class Functor f => Algebra f m where
|
class Functor f => Algebra f m | m -> f where
|
||||||
phi :: f m -> m
|
phi :: f m -> m
|
||||||
|
|
||||||
class Functor f => Coalgebra f m where
|
class Functor f => Coalgebra f m | m -> f where
|
||||||
psi :: m -> f m
|
psi :: m -> f m
|
||||||
|
|
||||||
-- Fixpoint, ie f (Mu f) = Mu f
|
-- Fixpoint, ie f (Mu f) = Mu f
|
||||||
|
|
11
Streams.hs
11
Streams.hs
|
@ -3,16 +3,17 @@
|
||||||
import Control.Monad.Instances
|
import Control.Monad.Instances
|
||||||
import Coalgebra
|
import Coalgebra
|
||||||
|
|
||||||
-- F X = A x X, for a fixed A, The prelude already provides the functor instance :)
|
-- F X = A x X, for a fixed A, this has a functor instance
|
||||||
type F a = (,) a
|
type F a = (,) a
|
||||||
|
|
||||||
-- This will give the fixpoint, ie a coalgebra.
|
-- This will give the fixpoint, ie a coalgebra, because F is a functor
|
||||||
type Stream a = Mu (F a)
|
type Stream a = Mu (F a)
|
||||||
|
|
||||||
|
-- basic constructor
|
||||||
(+:+) :: a -> Stream a -> Stream a
|
(+:+) :: a -> Stream a -> Stream a
|
||||||
(+:+) a s = In (a, s)
|
(+:+) a s = phi (a, s)
|
||||||
|
|
||||||
-- For every other (F a)-coalgebra x, there is a arrow x -> Stream a
|
-- For every (F a)-coalgebra x, there is a arrow x -> Stream a
|
||||||
-- and it is unique, so `Stream a` is the final (F a)-coalgebra!
|
-- and it is unique, so `Stream a` is the final (F a)-coalgebra!
|
||||||
sem :: (Coalgebra (F a) x) => x -> Stream a
|
sem :: (Coalgebra (F a) x) => x -> Stream a
|
||||||
sem x = x0 +:+ sem x' where (x0, x') = psi x
|
sem x = x0 +:+ sem x' where (x0, x') = psi x
|
||||||
|
@ -22,7 +23,7 @@ toList :: Stream a -> [a]
|
||||||
toList s = a0 : toList a' where (a0, a') = psi s
|
toList s = a0 : toList a' where (a0, a') = psi s
|
||||||
|
|
||||||
|
|
||||||
-- example, with a very simple (F Int)-coalgebra, 1 -> 2, 2 -> 3, 3 -> 2
|
-- example with a very simple (F Int)-coalgebra, 1 -> 2, 2 -> 3, 3 -> 2
|
||||||
data X = One | Two | Three
|
data X = One | Two | Three
|
||||||
instance Coalgebra (F Int) X where
|
instance Coalgebra (F Int) X where
|
||||||
psi One = (1, Two)
|
psi One = (1, Two)
|
||||||
|
|
Reference in a new issue