|
|
|
\documentclass[a4paper, 11pt]{amsart}
|
|
|
|
|
|
|
|
\input{style}
|
|
|
|
\input{preamble}
|
|
|
|
|
|
|
|
\title{Parallel wavelet transform}
|
|
|
|
\author{Joshua Moerman}
|
|
|
|
|
|
|
|
\begin{document}
|
|
|
|
|
|
|
|
%%%%% INTRO IMAGE
|
|
|
|
% \tikzstyle{plain_line}=[]
|
|
|
|
% \begin{figure}
|
|
|
|
% \centering
|
|
|
|
% \begin{subfigure}[b]{0.5\textwidth}
|
|
|
|
% \begin{tikzpicture}
|
|
|
|
% \begin{groupplot}[group style={group size=1 by 4}, clip=false, yticklabels={,,}, height=3cm, width=\textwidth, xmin=0, xmax=128, ymin=-1, ymax=1, domain=0:128]
|
|
|
|
% \nextgroupplot
|
|
|
|
% \addplot[plain_line] coordinates {(0,0) (1,0) (1,1) (2,1) (2,0) (128,0)}; \legend{$e_1$}
|
|
|
|
% \nextgroupplot \addplot[plain_line] coordinates {(0,0) (2,0) (2,1) (3,1) (3,0) (128,0)}; \legend{$e_2$}
|
|
|
|
% \nextgroupplot \addplot[plain_line] coordinates {(0,0) (3,0) (3,1) (4,1) (4,0) (128,0)}; \legend{$e_3$}
|
|
|
|
% \nextgroupplot \addplot[plain_line] {0.8*sin(1*360*x/128) + 0.2*sin(3*360*x/128) + 0.08*sin(5*360*x/128)};
|
|
|
|
% \end{groupplot}
|
|
|
|
% \end{tikzpicture}
|
|
|
|
% \caption{Representing a signal on the standard basis.}
|
|
|
|
% \end{subfigure}~
|
|
|
|
% \begin{subfigure}[b]{0.5\textwidth}
|
|
|
|
% \begin{tikzpicture}
|
|
|
|
% \begin{groupplot}[group style={group size=1 by 4}, yticklabels={,,}, height=3cm, width=\textwidth, xmin=0, xmax=128, ymin=-1, ymax=1, domain=0:128]
|
|
|
|
% \nextgroupplot \addplot[plain_line] {sin(1*360*x/128)}; \legend{$f_1$}
|
|
|
|
% \nextgroupplot \addplot[plain_line] {sin(3*360*x/128)}; \legend{$f_3$}
|
|
|
|
% \nextgroupplot \addplot[plain_line] {sin(5*360*x/128)}; \legend{$f_5$}
|
|
|
|
% \nextgroupplot \addplot[plain_line] {0.8*sin(1*360*x/128) + 0.2*sin(3*360*x/128) + 0.08*sin(5*360*x/128)};
|
|
|
|
% \end{groupplot}
|
|
|
|
% \end{tikzpicture}
|
|
|
|
% \caption{Representing a signal on the Fourier basis.}
|
|
|
|
% \end{subfigure}
|
|
|
|
% \caption{We can represent the same signal on different basis. Note that the Fourier representation is smaller in this case.}
|
|
|
|
% \label{fig:basicplot}
|
|
|
|
% \end{figure}
|
|
|
|
|
|
|
|
% $$ 0.088 + 0.174 \times 0.257 $$
|
|
|
|
% $$ 0.798 \times 0.201 + 0.081 $$
|
|
|
|
% $$ = \ldots + $$
|
|
|
|
|
|
|
|
|
|
|
|
%%%%% ERROR IMAGE
|
|
|
|
\tikzstyle{plain_line}=[]
|
|
|
|
\begin{figure}
|
|
|
|
\centering
|
|
|
|
\begin{subfigure}[b]{0.5\textwidth}
|
|
|
|
\begin{tikzpicture}
|
|
|
|
\begin{groupplot}[group style={group size=1 by 1}, clip=false, yticklabels={,,}, height=3cm, width=\textwidth, xmin=0, xmax=128, ymin=-1, ymax=1, domain=0:128]
|
|
|
|
\nextgroupplot \addplot[plain_line] {0.8*sin(1*360*x/128) + 0.2*sin(3*360*x/128) + 0.08*sin(5*360*x/128)};
|
|
|
|
\end{groupplot}
|
|
|
|
\end{tikzpicture}
|
|
|
|
\caption{Representing a signal on the standard basis.}
|
|
|
|
\end{subfigure}~
|
|
|
|
\begin{subfigure}[b]{0.5\textwidth}
|
|
|
|
\begin{tikzpicture}
|
|
|
|
\begin{groupplot}[group style={group size=1 by 1}, yticklabels={,,}, height=3cm, width=\textwidth, xmin=0, xmax=128, ymin=-1, ymax=1, domain=0:128]
|
|
|
|
\nextgroupplot \addplot[plain_line] {0.8*sin(1*360*x/128) + 0.2*sin(3*360*x/128) + 0.08*sin(5*360*x/128) + 0.5*sin(10*360*x/128)};
|
|
|
|
\end{groupplot}
|
|
|
|
\end{tikzpicture}
|
|
|
|
\caption{Representing a signal on the Fourier basis.}
|
|
|
|
\end{subfigure}
|
|
|
|
\caption{We can represent the same signal on different basis. Note that the Fourier representation is smaller in this case.}
|
|
|
|
\label{fig:basicplot}
|
|
|
|
\end{figure}
|
|
|
|
|
|
|
|
\end{document}
|