Browse Source

Cleans up a bit, adds options for iterations

master
Joshua Moerman 10 years ago
parent
commit
28f7497e0a
  1. 64
      wavelet/wavelet_parallel_mockup.cpp

64
wavelet/wavelet_parallel_mockup.cpp

@ -7,7 +7,7 @@
#include "wavelet_parallel.hpp"
// Number of iterations to improve time measurements
const unsigned int ITERS = 1;
static unsigned int ITERS = 1;
// Static :(, will be set in main
static unsigned int P;
@ -101,46 +101,20 @@ static void seq_wavelet(){
std::copy(v.begin(), v.end(), seq_result.begin());
}
// Checks whether seq and par agree
// NOTE: modifies the global par_result
static void check_equality(double threshold){
if(par_result == seq_result){
std::cout << colors::green("SUCCES:") << " Results are bitwise equal" << std::endl;
} else {
for(unsigned int i = 0; i < N; ++i){
auto sq = par_result[i] - seq_result[i];
par_result[i] = sq*sq;
}
auto rmse = std::sqrt(std::accumulate(par_result.begin(), par_result.end(), 0.0) / N);
if(rmse <= threshold){
std::cout << colors::green("SUCCES:") << " Results are almost the same: rmse = " << rmse << std::endl;
} else {
std::cout << colors::red("FAIL:") << " Results differ: rmse = " << rmse << std::endl;
}
}
}
// square difference, used to calculate root mean squared error
static double sq_diff(double x, double y){ return (x-y)*(x-y); }
// Checks whether inverse gives us the data back
// NOTE: modifies the global seq_result
static void check_inverse(double threshold){
for(unsigned int i = 0; i < ITERS; ++i){
wvlt::unwavelet(seq_result.data(), seq_result.size(), 1);
static void compare_results(std::vector<double> const & lh, std::vector<double> const & rh, double threshold){
if(lh == rh){
std::cout << colors::green("SUCCES:") << " bitwise qual" << std::endl;
return;
}
bool same = true;
for(unsigned int i = 0; i < N; ++i){
if(data(i) != seq_result[i]) same = false;
auto sq = data(i) - seq_result[i];
seq_result[i] = sq*sq;
}
auto rmse = std::sqrt(std::accumulate(seq_result.begin(), seq_result.end(), 0.0) / N);
if(same){
std::cout << colors::green("SUCCES:") << " Inverse is bitwise correct" << std::endl;
double rmse = std::sqrt(std::inner_product(lh.begin(), lh.end(), rh.begin(), 0.0, std::plus<double>(), &sq_diff) / lh.size());
if(rmse <= threshold){
std::cout << colors::green("SUCCES:") << " error within threshold, rmse = " << rmse << std::endl;
} else {
if(rmse <= threshold){
std::cout << colors::green("SUCCES:") << " Inverse is almost correct: rmse = " << rmse << std::endl;
} else {
std::cout << colors::red("FAIL:") << " Inverse seems wrong: rmse = " << rmse << std::endl;
}
std::cout << colors::red("FAIL:") << " error to big, rmse = " << rmse << std::endl;
}
}
@ -152,8 +126,9 @@ int main(int argc, char** argv){
opts.add_options()
("p", po::value<unsigned int>(), "number of processors")
("n", po::value<unsigned int>(), "number of elements")
("iterations", po::value<unsigned int>()->default_value(5), "number of iterations")
("help", po::value<bool>(), "show this help")
("check", po::value(&should_check), "enables correctness checks");
("check", po::value<bool>(), "enables correctness checks");
po::variables_map vm;
// Parse and set options
@ -169,6 +144,7 @@ int main(int argc, char** argv){
N = vm["n"].as<unsigned int>();
P = vm["p"].as<unsigned int>();
ITERS = vm["iterations"].as<unsigned int>();
if(!is_pow_of_two(N)) throw po::error("n is not a power of two");
if(!is_pow_of_two(P)) throw po::error("p is not a power of two");
@ -190,7 +166,13 @@ int main(int argc, char** argv){
// Checking equality of algorithms
if(vm.count("check")){
double threshold = 1.0e-8;
check_equality(threshold);
check_inverse(threshold);
std::cout << "Checking results ";
compare_results(seq_result, par_result, threshold);
for(int i = 0; i < ITERS; ++i) wvlt::unwavelet(seq_result.data(), seq_result.size(), 1);
for(unsigned int i = 0; i < par_result.size(); ++i) par_result[i] = data(i);
std::cout << "Checking inverse ";
compare_results(seq_result, par_result, threshold);
}
}