Adds a parallel version of the wavelet transform (still a mockup).
Timing results suggests that it is indeed faster!
This commit is contained in:
parent
edd9a03456
commit
2f80e92b6d
1 changed files with 196 additions and 0 deletions
196
wavelet/mockup.cpp
Normal file
196
wavelet/mockup.cpp
Normal file
|
@ -0,0 +1,196 @@
|
|||
#include <includes.hpp>
|
||||
#include <utilities.hpp>
|
||||
#include <bsp.hpp>
|
||||
|
||||
#include "wavelet2.hpp"
|
||||
#include "defines.hpp"
|
||||
|
||||
#ifndef NEXP
|
||||
// will take about 1.3 GB
|
||||
#define NEXP 25
|
||||
#endif
|
||||
|
||||
const unsigned int P = 2;
|
||||
const unsigned int N = 1 << NEXP;
|
||||
|
||||
// Static vectors for correctness checking
|
||||
static std::vector<double> par_result(N);
|
||||
static std::vector<double> seq_result(N);
|
||||
|
||||
// Convenience container of some often-used values
|
||||
// NOTE: we use block distribution
|
||||
// n = inputisze, p = nproc(), s = pid(), b = blocksize
|
||||
struct distribution {
|
||||
unsigned int n, p, s, b;
|
||||
};
|
||||
|
||||
// fake data
|
||||
static double data(unsigned int global_index){
|
||||
return global_index - N/2.0 + 0.5 + std::sin(0.1337*global_index);
|
||||
}
|
||||
|
||||
// NOTE: does not synchronize
|
||||
static void read_and_distribute_data(distribution const & d, double* x){
|
||||
std::vector<double> r(d.b);
|
||||
for(unsigned int t = 0; t < d.p; ++t){
|
||||
r.assign(d.b, 0.0);
|
||||
for(unsigned int i = 0; i < d.b; ++i){
|
||||
r[i] = data(i + t*d.b);
|
||||
}
|
||||
bsp::put(t, r.data(), x, 0, r.size());
|
||||
}
|
||||
}
|
||||
|
||||
// NOTE: we assume x, next and proczero to be already allocated and bsp::pushed
|
||||
// NOTE: no sync at the end
|
||||
// block distributed parallel wavelet, result is also in block distribution (in-place in x)
|
||||
static void par_wavelet_base(distribution const & d, double* x, double* next, double* proczero){
|
||||
for(unsigned int i = 1; i <= d.b/4; i <<= 1){
|
||||
// send the two elements over
|
||||
auto t = (d.s - 1 + d.p) % d.p;
|
||||
bsp::put(t, &x[0], next, 0);
|
||||
bsp::put(t, &x[i], next, 1);
|
||||
bsp::sync();
|
||||
|
||||
wvlt::wavelet_mul(x, next[0], next[1], d.b, i);
|
||||
}
|
||||
|
||||
// fan in (i.e. 2 elements to proc zero)
|
||||
|
||||
bsp::sync();
|
||||
|
||||
// send 2 of your own elements
|
||||
for(unsigned int i = 0; i < 2; ++i){
|
||||
bsp::put(0, &x[i * d.b/2], proczero, d.s * 2 + i);
|
||||
}
|
||||
bsp::sync();
|
||||
|
||||
// proc zero has the privilige/duty to finish the job
|
||||
if(d.s == 0) {
|
||||
wvlt::wavelet(proczero, 2*d.p);
|
||||
// and to send it back to everyone
|
||||
for(unsigned int t = 0; t < d.p; ++t){
|
||||
for(unsigned int i = 0; i < 2; ++i){
|
||||
bsp::put(t, &proczero[t*2 + i], x, i * d.b/2);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void par_wavelet(){
|
||||
bsp::begin(P);
|
||||
distribution d{N, bsp::nprocs(), bsp::pid(), N/P};
|
||||
|
||||
// We allocate and push everything up front, since we need it anyways
|
||||
// (so peak memory is the same). This saves us 1 bsp::sync
|
||||
// For convenience and consistency we use std::vector
|
||||
std::vector<double> x(d.b, 0.0);
|
||||
std::vector<double> next(2, 0.0);
|
||||
std::vector<double> proczero(d.s == 0 ? 2*d.p : 1, 0.0);
|
||||
|
||||
bsp::push_reg(x.data(), x.size());
|
||||
bsp::push_reg(next.data(), next.size());
|
||||
bsp::push_reg(proczero.data(), proczero.size());
|
||||
|
||||
bsp::sync();
|
||||
|
||||
// processor zero reads data from file
|
||||
// gives each proc its own piece
|
||||
if(d.s == 0) read_and_distribute_data(d, x.data());
|
||||
bsp::sync();
|
||||
|
||||
double time1 = bsp::time();
|
||||
|
||||
par_wavelet_base(d, x.data(), next.data(), proczero.data());
|
||||
bsp::sync();
|
||||
|
||||
double time2 = bsp::time();
|
||||
if(d.s==0) printf("parallel version\t%f\n", time2 - time1);
|
||||
|
||||
// Clean up and send all data to proc zero for correctness checking
|
||||
// So this is not part of the parallel program anymore
|
||||
bsp::pop_reg(proczero.data());
|
||||
bsp::pop_reg(next.data());
|
||||
next.clear();
|
||||
proczero.clear();
|
||||
|
||||
bsp::push_reg(par_result.data(), par_result.size());
|
||||
bsp::sync();
|
||||
|
||||
bsp::put(0, x.data(), par_result.data(), d.s * d.b, d.b);
|
||||
bsp::sync();
|
||||
|
||||
bsp::pop_reg(par_result.data());
|
||||
bsp::pop_reg(x.data());
|
||||
bsp::end();
|
||||
}
|
||||
|
||||
static void seq_wavelet(){
|
||||
std::vector<double> v(N);
|
||||
for(unsigned int i = 0; i < N; ++i) v[i] = data(i);
|
||||
|
||||
{ auto time1 = timer::clock::now();
|
||||
wvlt::wavelet(v.data(), v.size());
|
||||
auto time2 = timer::clock::now();
|
||||
printf("sequential version\t%f\n", timer::from_dur(time2 - time1));
|
||||
}
|
||||
|
||||
std::copy(v.begin(), v.end(), seq_result.begin());
|
||||
}
|
||||
|
||||
// Checks whether seq and par agree
|
||||
// NOTE: modifies the global par_result
|
||||
static void check_equality(double threshold){
|
||||
if(par_result == seq_result){
|
||||
std::cout << colors::green("SUCCES:") << " Results are bitwise equal" << std::endl;
|
||||
} else {
|
||||
for(unsigned int i = 0; i < N; ++i){
|
||||
auto sq = par_result[i] - seq_result[i];
|
||||
par_result[i] = sq*sq;
|
||||
}
|
||||
auto rmse = std::sqrt(std::accumulate(par_result.begin(), par_result.end(), 0.0) / N);
|
||||
if(rmse <= threshold){
|
||||
std::cout << colors::green("SUCCES:") << " Results are almost the same: rmse = " << rmse << std::endl;
|
||||
} else {
|
||||
std::cout << colors::red("FAIL:") << " Results differ: rmse = " << rmse << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Checks whether inverse gives us the data back
|
||||
// NOTE: modifies the global seq_result
|
||||
static void check_inverse(double threshold){
|
||||
wvlt::unwavelet(seq_result.data(), seq_result.size());
|
||||
bool same = true;
|
||||
for(unsigned int i = 0; i < N; ++i){
|
||||
if(data(i) != seq_result[i]) same = false;
|
||||
auto sq = data(i) - seq_result[i];
|
||||
seq_result[i] = sq*sq;
|
||||
}
|
||||
auto rmse = std::sqrt(std::accumulate(seq_result.begin(), seq_result.end(), 0.0) / N);
|
||||
if(same){
|
||||
std::cout << colors::green("SUCCES:") << " Inverse is bitwise correct" << std::endl;
|
||||
} else {
|
||||
if(rmse <= threshold){
|
||||
std::cout << colors::green("SUCCES:") << " Inverse are almost correct: rmse = " << rmse << std::endl;
|
||||
} else {
|
||||
std::cout << colors::red("FAIL:") << " Inverse seems wrong: rmse = " << rmse << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char** argv){
|
||||
bsp::init(par_wavelet, argc, argv);
|
||||
|
||||
// Run both versions (will print timings)
|
||||
seq_wavelet();
|
||||
par_wavelet();
|
||||
|
||||
// Checking equality of algorithms
|
||||
bool should_check = false;
|
||||
if(should_check){
|
||||
double threshold = 1.0e-8;
|
||||
check_equality(threshold);
|
||||
check_inverse(threshold);
|
||||
}
|
||||
}
|
Reference in a new issue