Browse Source

Adds program options for the 2d mockup, also makes it cartesius compatible

master
Joshua Moerman 10 years ago
parent
commit
83814a30a0
  1. 163
      wavelet/wavelet_parallel_2D_mockup.cpp

163
wavelet/wavelet_parallel_2D_mockup.cpp

@ -7,11 +7,14 @@
#include "wavelet.hpp"
#include "wavelet_parallel.hpp"
static unsigned int P;
static unsigned int W;
static unsigned int H;
static struct {
unsigned int P;
unsigned int W;
unsigned int H;
unsigned int M;
bool check_results;
} globals;
static std::vector<double> data;
static std::vector<double> seqr;
static std::vector<double> parr;
@ -38,6 +41,12 @@ struct block {
bsp::push_reg(hcomm.data(), hcomm.size());
bsp::push_reg(vcomm.data(), vcomm.size());
}
void pop() {
bsp::pop_reg(data.data());
bsp::pop_reg(hcomm.data());
bsp::pop_reg(vcomm.data());
}
};
// Communicate vertical data from b (strided) to b2 (not strided)
@ -110,26 +119,43 @@ static void hstep(wvlt::par::proc_info const & pi, plan_2D const & plan, std::ve
}
}
// gets globals from processor 0
static void get_globals(){
bsp::push_reg(&globals);
bsp::sync();
bsp::get(0, &globals, 0, &globals);
bsp::sync();
bsp::pop_reg(&globals);
}
// fake data
double data(unsigned int x, unsigned int y){
return x*y;
}
static void par_wavelet_2D(){
bsp::begin(P);
bsp::begin(globals.P);
get_globals();
const wvlt::par::proc_info d(bsp::nprocs(), bsp::pid());
const wvlt::par::plan_1D horizontal(W, W/d.p, 1);
const wvlt::par::plan_1D vertical(H, H/d.p, 1);
const wvlt::par::plan_1D horizontal(globals.W, globals.W/d.p, globals.M);
const wvlt::par::plan_1D vertical(globals.H, globals.H/d.p, globals.M);
const plan_2D plan{horizontal, vertical};
auto bbb = block(plan);
// We allocated everything up front, we don't actually need to do this
// but it's easy, as we don't have to think of this later.
std::vector<block> blocks(d.p, bbb);
std::vector<double> hfinish(2 * d.p * vertical.b, 0.0);
std::vector<double> vfinish(horizontal.b * 2 * d.p, 0.0);
// Direct read because MCBSP can do this ;D
// As we will be generating the data, no need to sync
for(unsigned int b = 0; b < blocks.size(); ++b){
unsigned int x_start = b * horizontal.b;
unsigned int y_start = (d.s - b + d.p)%d.p * vertical.b;
for(unsigned int y = 0; y < vertical.b; ++y){
for(unsigned int x = 0; x < horizontal.b; ++x){
auto v = data[x_start + x + horizontal.n*(y_start+y)];
auto v = data(x_start + x, y_start + y);
blocks[b].data[x + horizontal.b*y] = v;
}
}
@ -150,29 +176,32 @@ static void par_wavelet_2D(){
stride <<= plan.horizontal.m;
}
// finish parallely
// fan in to the right processor
unsigned int hh = horizontal.b/2;
for(unsigned int b = 0; b < blocks.size(); ++b){
unsigned int t = (d.s - b + d.p)%d.p;
unsigned int x_start = b * 2;
auto ptr = blocks[b].data.data();
for(unsigned int y = 0; y < vertical.b; ++y){
bsp::put(t, &ptr[0 + horizontal.b*y], hfinish.data(), 0 + x_start + 2*d.p*y, 1);
bsp::put(t, &ptr[hh + horizontal.b*y], hfinish.data(), 1 + x_start + 2*d.p*y, 1);
// processor, source, dest, offset
bsp::put(t, &ptr[0 + horizontal.b*y], hfinish.data(), 0 + x_start + 2*d.p*y);
bsp::put(t, &ptr[hh + horizontal.b*y], hfinish.data(), 1 + x_start + 2*d.p*y);
}
}
bsp::sync();
// last step of the algorithm
for(unsigned int y = 0; y < vertical.b; ++y){
wvlt::wavelet(hfinish.data() + 2*d.p*y, 2*d.p, 1);
}
// fan out to the right processor
for(unsigned int y = 0; y < vertical.b; ++y){
for(unsigned int t = 0; t < d.p; ++t){
unsigned int b = (t - d.s + d.p)%d.p;
unsigned int x_start = b * 2;
bsp::put(t, &hfinish[0 + x_start + 2*d.p*y], blocks[b].data.data(), 0 + horizontal.b*y, 1);
bsp::put(t, &hfinish[1 + x_start + 2*d.p*y], blocks[b].data.data(), hh + horizontal.b*y, 1);
bsp::put(t, &hfinish[0 + x_start + 2*d.p*y], blocks[b].data.data(), 0 + horizontal.b*y);
bsp::put(t, &hfinish[1 + x_start + 2*d.p*y], blocks[b].data.data(), hh + horizontal.b*y);
}
}
bsp::sync();
@ -186,29 +215,32 @@ static void par_wavelet_2D(){
stride <<= plan.vertical.m;
}
// finish parallely
// fan in to the right processor
unsigned int hh = vertical.b/2;
for(unsigned int b = 0; b < blocks.size(); ++b){
unsigned int t = b;
unsigned int y_start = (d.s - b + d.p)%d.p * 2;
auto ptr = blocks[b].data.data();
for(unsigned int x = 0; x < horizontal.b; ++x){
bsp::put(t, &ptr[x + 0 *horizontal.b], vfinish.data(), x + horizontal.b*(y_start + 0), 1);
bsp::put(t, &ptr[x + hh*horizontal.b], vfinish.data(), x + horizontal.b*(y_start + 1), 1);
// processor, source, dest, offset
bsp::put(t, &ptr[x + 0 *horizontal.b], vfinish.data(), x + horizontal.b*(y_start + 0));
bsp::put(t, &ptr[x + hh*horizontal.b], vfinish.data(), x + horizontal.b*(y_start + 1));
}
}
bsp::sync();
// last step of the algorithm
for(unsigned int x = 0; x < horizontal.b; ++x){
wvlt::wavelet(vfinish.data() + x, 2*d.p, horizontal.b);
}
// fan out to the right processor
for(unsigned int x = 0; x < horizontal.b; ++x){
for(unsigned int t = 0; t < d.p; ++t){
unsigned int b = d.s;
unsigned int y_start = (t - b + d.p)%d.p * 2;
bsp::put(t, &vfinish[x + horizontal.b*(y_start + 0)], blocks[b].data.data(), horizontal.b*0 + x, 1);
bsp::put(t, &vfinish[x + horizontal.b*(y_start + 1)], blocks[b].data.data(), horizontal.b*hh + x, 1);
bsp::put(t, &vfinish[x + horizontal.b*(y_start + 0)], blocks[b].data.data(), horizontal.b*0 + x);
bsp::put(t, &vfinish[x + horizontal.b*(y_start + 1)], blocks[b].data.data(), horizontal.b*hh + x);
}
}
bsp::sync();
@ -217,25 +249,33 @@ static void par_wavelet_2D(){
double time2 = bsp::time();
if(d.s==0) printf("parallel version\t%f\n", time2 - time1);
// Direct write because MCBSP can do this ;D
for(unsigned int b = 0; b < blocks.size(); ++b){
unsigned int x_start = b * horizontal.b;
unsigned int y_start = (d.s - b + d.p)%d.p * vertical.b;
for(unsigned int y = 0; y < vertical.b; ++y){
for(unsigned int x = 0; x < horizontal.b; ++x){
auto v = blocks[b].data[x + horizontal.b*y];
parr[x_start + x + horizontal.n*(y_start+y)] = v;
if(globals.check_results){
bsp::push_reg(parr.data(), parr.size());
bsp::sync();
for(unsigned int b = 0; b < blocks.size(); ++b){
unsigned int x_start = b * horizontal.b;
unsigned int y_start = (d.s - b + d.p)%d.p * vertical.b;
for(unsigned int y = 0; y < vertical.b; ++y){
for(unsigned int x = 0; x < horizontal.b; ++x){
auto v = blocks[b].data[x + horizontal.b*y];
bsp::put(0, &v, parr.data(), x_start + x + horizontal.n*(y_start+y));
}
}
}
bsp::sync();
}
bsp::end();
}
static void seq_wavelet_2D(){
seqr = data;
for(unsigned int y = 0; y < globals.H; ++y)
for(unsigned int x = 0; x < globals.W; ++x)
seqr[x + globals.W*y] = data(x, y);
auto time1 = timer::clock::now();
wvlt::wavelet_2D(seqr.data(), W, H);
wvlt::wavelet_2D(seqr.data(), globals.W, globals.H);
auto time2 = timer::clock::now();
printf("sequential version\t%f\n", timer::from_dur(time2 - time1));
}
@ -258,22 +298,61 @@ static int compare_results(std::vector<double> const & lh, std::vector<double> c
}
int main(int argc, char** argv){
P = 2;
H = 1024;
W = 1024;
bsp::init(par_wavelet_2D, argc, argv);
namespace po = boost::program_options;
// Describe program options
po::options_description opts;
opts.add_options()
("p", po::value<unsigned int>(), "number of processors")
("w", po::value<unsigned int>(), "width of image")
("h", po::value<unsigned int>(), "height of image")
("m", po::value<unsigned int>()->default_value(1), "the variable m")
("help", po::bool_switch(), "show this help")
("show-input", po::bool_switch(), "shows the given input")
("seq", po::bool_switch(), "also runs the sequential algorithm")
("check", po::bool_switch(), "enables correctness checks");
po::variables_map vm;
// Parse and set options
try {
po::store(po::parse_command_line(argc, argv, opts), vm);
po::notify(vm);
if(vm["help"].as<bool>()){
std::cout << "Parallel wavelet mockup" << std::endl;
std::cout << opts << std::endl;
return 0;
}
data.assign(W*H, 0.0);
for(unsigned int y = 0; y < H; ++y)
for(unsigned int x = 0; x < W; ++x)
data[x + W*y] = x*y;
seqr.assign(W*H, 0.0);
parr.assign(W*H, 0.0);
globals.P = vm["p"].as<unsigned int>();
globals.W = vm["w"].as<unsigned int>();
globals.H = vm["h"].as<unsigned int>();
globals.M = vm["m"].as<unsigned int>();
globals.check_results = vm["check"].as<bool>();
if(!is_pow_of_two(globals.P)) throw po::error("p is not a power of two");
if(!is_pow_of_two(globals.W)) throw po::error("w is not a power of two");
if(!is_pow_of_two(globals.H)) throw po::error("h is not a power of two");
} catch(std::exception& e){
std::cout << colors::red("ERROR: ") << e.what() << std::endl;
std::cout << opts << std::endl;
return 1;
}
if(vm["show-input"].as<bool>()){
std::cout << "w\t" << globals.W << "h\t" << globals.H << "\np\t" << globals.P << "\nm\t" << globals.M << std::endl;
}
seqr.assign(globals.W*globals.H, 0.0);
parr.assign(globals.W*globals.H, 0.0);
bsp::init(par_wavelet_2D, argc, argv);
par_wavelet_2D();
seq_wavelet_2D();
double threshold = 1.0e-8;
std::cout << "Checking results ";
compare_results(seqr, parr, threshold);
if(globals.check_results){
double threshold = 1.0e-8;
std::cout << "Checking results ";
compare_results(seqr, parr, threshold);
}
}