Browse Source

Adds program options, puts parallel wvlt in separate header

master
Joshua Moerman 10 years ago
parent
commit
ceb2256b97
  1. 9
      include/utilities.hpp
  2. 10
      wavelet/jcmp_quantization.hpp
  3. 5
      wavelet/wavelet_1.hpp
  4. 1
      wavelet/wavelet_2.hpp
  5. 86
      wavelet/wavelet_parallel.hpp
  6. 117
      wavelet/wavelet_parallel_mockup.cpp

9
include/utilities.hpp

@ -5,7 +5,7 @@
template <typename Int>
bool is_pow_of_two(Int n){
return (n & (n - 1)) == 0;
return n && !(n & (n - 1));
}
template <typename Int>
@ -20,6 +20,13 @@ inline unsigned int two_log(unsigned int x){
return 8*sizeof(unsigned int) - unsigned(__builtin_clz(x-1));
}
// calculates 2^x (NOTE: can be improved by exponentiation by squaring)
inline unsigned int pow_two(unsigned int x){
unsigned int y = 1;
while(x--) y *= 2;
return y;
}
// Makes numbers human-readable with one decimal
// eg 2350000 becomes 2.3M
template <typename Int>

10
wavelet/jcmp_quantization.hpp

@ -54,11 +54,11 @@ namespace jcmp {
};
// non-overloaded versions
double id(double x) { return x; }
double log(double x) { return std::log(x); }
double exp(double x) { return std::exp(x); }
double sqrt(double x) { return std::sqrt(x); }
double sqr(double x) { return x*x; }
inline double id(double x) { return x; }
inline double log(double x) { return std::log(x); }
inline double exp(double x) { return std::exp(x); }
inline double sqrt(double x) { return std::sqrt(x); }
inline double sqr(double x) { return x*x; }
base get(type t, double max_abs, double min_abs, bool apply = true){
base b;

5
wavelet/wavelet_1.hpp

@ -6,6 +6,11 @@
#include "periodic_iterator.hpp"
#include "wavelet_constants.hpp"
/* This header is deprecated. Use wavelet_2.hpp instead. It's still here
* for checking correctness of implementations, as this one is correct, but
* very naive (and hence slow).
*/
namespace wvlt {
namespace V1 {
// Apply the matrix Wn with the DAUB4 coefficients

1
wavelet/wavelet_2.hpp

@ -1,5 +1,6 @@
#pragma once
#include <cassert>
#include <utilities.hpp>
#include "wavelet_constants.hpp"

86
wavelet/wavelet_parallel.hpp

@ -0,0 +1,86 @@
#pragma once
#include <includes.hpp>
#include <utilities.hpp>
#include <bsp.hpp>
#include "wavelet.hpp"
/* In the following function we assume any in-parameter to be already
* bsp::pushed. And the functions won't do any bsp::sync at the end. Both
* conventions make it possible to chains functions with lesser syncs.
*
* Distribution is block distribution.
*/
namespace wvlt {
namespace par {
// Convenience container of some often-used values
// n = inputisze, p = nproc(), s = pid()
// b = blocksize, prev/next = previous and next processor index
struct distribution {
unsigned int n, p, s, b, prev, next;
distribution(unsigned int n_, unsigned int p_, unsigned int s_)
: n(n_), p(p_), s(s_), b(n/p), prev((s-1+p)%p), next((s+1)%p)
{}
};
inline unsigned int communication_size(unsigned int m){
return pow_two(m+1) - 2;
}
inline void step(distribution const & d, double* x, double* other, unsigned int size, unsigned int stride, unsigned int m){
unsigned int t = d.prev;
unsigned int Cm = communication_size(m);
for(unsigned int i = 0; i < Cm; ++i){
bsp::put(t, &x[stride*i], other, i, 1);
}
bsp::sync();
unsigned int end = pow_two(m);
for(unsigned int i = 1; i < end; i <<= 1){
wavelet_mul(x, other[0], other[i], size, stride*i);
if(i < end/2) wavelet_mul_base(other, 2*end - 2*i, i);
}
}
inline void base(distribution const & d, double* x, double* other, unsigned int size, unsigned int m){
unsigned int t = two_log(d.b);
unsigned int steps = (t-1)/m;
unsigned int stride = 1;
for(unsigned int i = steps; i; i--){
step(d, x, other, size, stride, m);
stride <<= m;
}
unsigned int remaining = (t-1) - m*steps;
if(remaining)
step(d, x, other, size, stride, remaining);
}
// block distributed parallel wavelet, result is also in block distribution (in-place in x)
inline void wavelet(distribution const & d, double* x, double* next, double* proczero, unsigned int m){
// First do the local part
base(d, x, next, d.b, m);
// Then do a fan in (i.e. 2 elements to proc zero)
for(unsigned int i = 0; i < 2; ++i){
bsp::put(0, &x[i * d.b/2], proczero, d.s * 2 + i);
}
bsp::sync();
// proc zero has the privilige/duty to finish the job
if(d.s == 0) {
wvlt::wavelet(proczero, 2*d.p, 1);
// and to send it back to everyone
for(unsigned int t = 0; t < d.p; ++t){
for(unsigned int i = 0; i < 2; ++i){
bsp::put(t, &proczero[t*2 + i], x, i * d.b/2);
}
}
}
}
}
}

117
wavelet/wavelet_parallel_mockup.cpp

@ -1,29 +1,21 @@
#include <includes.hpp>
#include <utilities.hpp>
#include <boost/program_options.hpp>
#include <bsp.hpp>
#include "wavelet.hpp"
#include "defines.hpp"
#include "wavelet_parallel.hpp"
#ifndef NEXP
// will take about 1.3 GB
#define NEXP 25
#endif
// Number of iterations to improve time measurements
const unsigned int ITERS = 1;
const unsigned int P = 2;
const unsigned int N = 1 << NEXP;
const unsigned int ITERS = 5;
// Static :(, will be set in main
static unsigned int P;
static unsigned int N;
// Static vectors for correctness checking
static std::vector<double> par_result(N);
static std::vector<double> seq_result(N);
// Convenience container of some often-used values
// NOTE: we use block distribution
// n = inputisze, p = nproc(), s = pid(), b = blocksize
struct distribution {
unsigned int n, p, s, b;
};
static std::vector<double> par_result;
static std::vector<double> seq_result;
// fake data
static double data(unsigned int global_index){
@ -31,7 +23,7 @@ static double data(unsigned int global_index){
}
// NOTE: does not synchronize
static void read_and_distribute_data(distribution const & d, double* x){
static void read_and_distribute_data(wvlt::par::distribution const & d, double* x){
std::vector<double> r(d.b);
for(unsigned int t = 0; t < d.p; ++t){
r.assign(d.b, 0.0);
@ -42,51 +34,18 @@ static void read_and_distribute_data(distribution const & d, double* x){
}
}
// NOTE: we assume x, next and proczero to be already allocated and bsp::pushed
// NOTE: no sync at the end
// block distributed parallel wavelet, result is also in block distribution (in-place in x)
static void par_wavelet_base(distribution const & d, double* x, double* next, double* proczero){
for(unsigned int i = 1; i <= d.b/4; i <<= 1){
// send the two elements over
auto t = (d.s - 1 + d.p) % d.p;
bsp::put(t, &x[0], next, 0);
bsp::put(t, &x[i], next, 1);
bsp::sync();
wvlt::wavelet_mul(x, next[0], next[1], d.b, i);
}
// fan in (i.e. 2 elements to proc zero)
bsp::sync();
// send 2 of your own elements
for(unsigned int i = 0; i < 2; ++i){
bsp::put(0, &x[i * d.b/2], proczero, d.s * 2 + i);
}
bsp::sync();
// proc zero has the privilige/duty to finish the job
if(d.s == 0) {
wvlt::wavelet(proczero, 2*d.p, 1);
// and to send it back to everyone
for(unsigned int t = 0; t < d.p; ++t){
for(unsigned int i = 0; i < 2; ++i){
bsp::put(t, &proczero[t*2 + i], x, i * d.b/2);
}
}
}
}
static void par_wavelet(){
bsp::begin(P);
distribution d{N, bsp::nprocs(), bsp::pid(), N/P};
wvlt::par::distribution d(N, bsp::nprocs(), bsp::pid());
unsigned int m = 2;
unsigned int Cm = wvlt::par::communication_size(m);
// We allocate and push everything up front, since we need it anyways
// (so peak memory is the same). This saves us 1 bsp::sync
// (so peak memory is the same). This saves us 1 bsp::sync()
// For convenience and consistency we use std::vector
std::vector<double> x(d.b, 0.0);
std::vector<double> next(2, 0.0);
std::vector<double> next(Cm, 0.0);
std::vector<double> proczero(d.s == 0 ? 2*d.p : 1, 0.0);
bsp::push_reg(x.data(), x.size());
@ -100,13 +59,12 @@ static void par_wavelet(){
if(d.s == 0) read_and_distribute_data(d, x.data());
bsp::sync();
// do the parallel wavelet!!!
double time1 = bsp::time();
for(unsigned int i = 0; i < ITERS; ++i){
par_wavelet_base(d, x.data(), next.data(), proczero.data());
wvlt::par::wavelet(d, x.data(), next.data(), proczero.data(), m);
bsp::sync();
}
double time2 = bsp::time();
if(d.s==0) printf("parallel version\t%f\n", time2 - time1);
@ -187,6 +145,42 @@ static void check_inverse(double threshold){
}
int main(int argc, char** argv){
namespace po = boost::program_options;
// Describe program options
po::options_description opts;
opts.add_options()
("p", po::value<unsigned int>(), "number of processors")
("n", po::value<unsigned int>(), "number of elements")
("help", po::value<bool>(), "show this help")
("check", po::value(&should_check), "enables correctness checks");
po::variables_map vm;
// Parse and set options
try {
po::store(po::parse_command_line(argc, argv, opts), vm);
po::notify(vm);
if(vm.count("help")){
std::cout << "Parallel wavelet mockup" << std::endl;
std::cout << opts << std::endl;
return 0;
}
N = vm["n"].as<unsigned int>();
P = vm["p"].as<unsigned int>();
if(!is_pow_of_two(N)) throw po::error("n is not a power of two");
if(!is_pow_of_two(P)) throw po::error("p is not a power of two");
} catch(std::exception& e){
std::cout << colors::red("ERROR: ") << e.what() << std::endl;
std::cout << opts << std::endl;
return 1;
}
// Initialise stuff
par_result.assign(N, 0.0);
seq_result.assign(N, 0.0);
bsp::init(par_wavelet, argc, argv);
// Run both versions (will print timings)
@ -194,8 +188,7 @@ int main(int argc, char** argv){
par_wavelet();
// Checking equality of algorithms
bool should_check = false;
if(should_check){
if(vm.count("check")){
double threshold = 1.0e-8;
check_equality(threshold);
check_inverse(threshold);