\documentclass[a4paper, 11pt]{amsart} \input{style} \input{preamble} \title{Parallel wavelet transform} \author{Joshua Moerman} \begin{document} \tikzstyle{plain_line}=[] \begin{figure} \centering \begin{subfigure}[b]{0.5\textwidth} \begin{tikzpicture} \begin{groupplot}[group style={group size=1 by 4}, clip=false, yticklabels={,,}, height=3cm, width=\textwidth, xmin=0, xmax=128, ymin=-1, ymax=1, domain=0:128] \nextgroupplot \addplot[plain_line] coordinates {(0,0) (1,0) (1,1) (2,1) (2,0) (128,0)}; \legend{$e_1$} \nextgroupplot \addplot[plain_line] coordinates {(0,0) (2,0) (2,1) (3,1) (3,0) (128,0)}; \legend{$e_2$} \nextgroupplot \addplot[plain_line] coordinates {(0,0) (3,0) (3,1) (4,1) (4,0) (128,0)}; \legend{$e_3$} \nextgroupplot \addplot[plain_line] {0.8*sin(1*360*x/128) + 0.2*sin(3*360*x/128) + 0.08*sin(5*360*x/128)}; \end{groupplot} \end{tikzpicture} \caption{Representing a signal on the standard basis.} \end{subfigure}~ \begin{subfigure}[b]{0.5\textwidth} \begin{tikzpicture} \begin{groupplot}[group style={group size=1 by 4}, yticklabels={,,}, height=3cm, width=\textwidth, xmin=0, xmax=128, ymin=-1, ymax=1, domain=0:128] \nextgroupplot \addplot[plain_line] {sin(1*360*x/128)}; \legend{$f_1$} \nextgroupplot \addplot[plain_line] {sin(3*360*x/128)}; \legend{$f_3$} \nextgroupplot \addplot[plain_line] {sin(5*360*x/128)}; \legend{$f_5$} \nextgroupplot \addplot[plain_line] {0.8*sin(1*360*x/128) + 0.2*sin(3*360*x/128) + 0.08*sin(5*360*x/128)}; \end{groupplot} \end{tikzpicture} \caption{Representing a signal on the Fourier basis.} \end{subfigure} \caption{We can represent the same signal on different basis. Note that the Fourier representation is smaller in this case.} \label{fig:basicplot} \end{figure} $$ 0.088 + 0.174 \times 0.257 $$ $$ 0.798 \times 0.201 + 0.081 $$ $$ = \ldots + $$ \end{document}