Playing around with genetic programming. Program will make a formula which approximates the input sequence.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.

82 lines
1.6 KiB

11 years ago
#include "evolve.hpp"
#include "utilities.hpp"
#include <map>
#include <iterator>
#include <cmath>
#include <iostream>
static Score score(const std::vector<int>& goal, Genome const & genome){
Score ss = 0;
for(int i = 0; i < goal.size(); ++i) {
Score error = goal[i] - genome.evaluate_on(i);
ss += error * error;
}
return ss;
}
template <typename It, typename Dist>
It advance2(It it, Dist d){
std::advance(it, d);
return it;
}
template <typename C>
struct subrange_t {
C & c;
int s;
subrange_t(C & c_, int s_)
: c(c_), s(s_)
{}
auto begin(){ return advance2(c.begin(), s); }
auto end(){ return c.end(); }
auto begin() const { return advance2(c.begin(), s); }
auto end() const { return c.end(); }
};
template <typename C>
auto subrange(C & c, int start){
return subrange_t<C>(c, start);
}
void Evolver::next_generation(){
// evaluate (if needed)
for(auto&& g : current_generation){
if(g.second < 0) {
g.second = score(goal, g.first);
}
}
// pick best no worse than parent
auto best = current_generation[0];
for(auto&& g : current_generation){
if(g.second <= best.second){
best = g;
}
}
// continue with the best as parent
current_generation[0] = best;
int count = 0;
for(auto& g : subrange(current_generation, 1)){
count++;
g = best;
for(int j = 0; j < count; ++j){
while(!g.first.mutate_random_bit()){}
}
g.second = -1;
}
}
Evolver create_evolver(size_t population_size, size_t genome_size){
Evolver e;
e.current_generation.reserve(population_size);
for(size_t i = 0; i < population_size; ++i){
e.current_generation.emplace_back(random_genome(genome_size), -1);
}
return e;
}