1
Fork 0
mirror of https://github.com/Jaxan/hybrid-ads.git synced 2025-04-27 15:07:45 +02:00

Alters the splitting tree to be minimal (for the W-method)

This commit is contained in:
Joshua Moerman 2015-04-20 14:14:10 +02:00
parent 114ad8c8b7
commit 22208275fd
3 changed files with 131 additions and 116 deletions

View file

@ -10,22 +10,19 @@
using namespace std;
splitting_tree::splitting_tree(size_t N, size_t d)
: states(N)
, depth(d)
{
splitting_tree::splitting_tree(size_t N, size_t d) : states(N), depth(d) {
iota(begin(states), end(states), 0);
}
splitting_tree &lca_impl2(splitting_tree & node){
if(node.mark > 1) return node;
for(auto && c : node.children){
if(c.mark > 0) return lca_impl2(c);
splitting_tree & lca_impl2(splitting_tree & node) {
if (node.mark > 1) return node;
for (auto && c : node.children) {
if (c.mark > 0) return lca_impl2(c);
}
return node; // this is a leaf
}
result create_splitting_tree(const mealy& g, options opt){
result create_splitting_tree(const mealy & g, options opt) {
const auto N = g.graph_size;
const auto P = g.input_size;
const auto Q = g.output_size;
@ -34,130 +31,150 @@ result create_splitting_tree(const mealy& g, options opt){
auto & root = ret.root;
auto & succession = ret.successor_cache;
/* We'll use a queue to keep track of leaves we have to investigate;
* In some cases we cannot split, and have to wait for other parts of the
* tree. We keep track of how many times we did no work. If this is too
* much, there is no complete splitting tree.
*/
// We'll use a queue to keep track of leaves we have to investigate;
// In some cases we cannot split, and have to wait for other parts of the
// tree. We keep track of how many times we did no work. If this is too
// much, there is no complete splitting tree.
queue<reference_wrapper<splitting_tree>> work;
size_t days_without_progress = 0;
/* List of inputs, will be shuffled in case of randomizations */
// List of inputs, will be shuffled in case of randomizations
vector<input> all_inputs(P);
iota(begin(all_inputs), end(all_inputs), 0);
random_device rd;
mt19937 generator(rd());
size_t current_order = 0;
bool split_in_current_order = false;
// Some lambda functions capturing some state, makes the code a bit easier :)
const auto add_push_new_block = [&work](list<list<state>> const & new_blocks, splitting_tree& boom) {
boom.children.assign(new_blocks.size(), splitting_tree(0, boom.depth + 1));
size_t i = 0;
for(auto && b : new_blocks){
for (auto && b : new_blocks) {
boom.children[i++].states.assign(begin(b), end(b));
}
for(auto && c : boom.children){
for (auto && c : boom.children) {
work.push(c);
}
assert(boom.states.size() == accumulate(begin(boom.children), end(boom.children), 0ul, [](size_t l, const splitting_tree & r) { return l + r.states.size(); }));
assert(boom.states.size() == accumulate(begin(boom.children), end(boom.children), 0ul,
[](size_t l, const splitting_tree & r) {
return l + r.states.size();
}));
};
const auto is_valid = [N, opt, &g](list<list<state>> const & blocks, input symbol){
if(!opt.check_validity) return true;
for(auto && block : blocks) {
const auto new_blocks = partition_(begin(block), end(block), [symbol, &g](state state){
const auto is_valid = [N, opt, &g](list<list<state>> const & blocks, input symbol) {
for (auto && block : blocks) {
const auto new_blocks = partition_(begin(block), end(block), [symbol, &g](state state) {
return apply(g, state, symbol).to;
}, N);
for(auto && new_block : new_blocks){
if(new_block.size() != 1) return false;
for (auto && new_block : new_blocks) {
if (new_block.size() != 1) return false;
}
}
return true;
};
const auto update_succession = [N, &succession](state s, state t, size_t depth){
if(succession.size() < depth+1) succession.resize(depth+1, vector<state>(N, state(-1)));
const auto update_succession = [N, &succession](state s, state t, size_t depth) {
if (succession.size() < depth + 1)
succession.resize(depth + 1, vector<state>(N, state(-1)));
succession[depth][s] = t;
};
// We'll start with the root, obviously
work.push(root);
while(!work.empty()){
while (!work.empty()) {
splitting_tree & boom = work.front();
work.pop();
const size_t depth = boom.depth;
if(boom.states.size() == 1) continue;
if (boom.states.size() == 1) continue;
if(opt.randomized){
shuffle(begin(all_inputs), end(all_inputs), generator);
}
if (opt.randomized) shuffle(begin(all_inputs), end(all_inputs), generator);
// First try to split on output
for(input symbol : all_inputs){
const auto new_blocks = partition_(begin(boom.states), end(boom.states), [symbol, depth, &g, &update_succession](state state){
const auto r = apply(g, state, symbol);
update_succession(state, r.to, depth);
return r.output;
}, Q);
if (!opt.assert_minimal_order || current_order == 0) {
// First try to split on output
for (input symbol : all_inputs) {
const auto new_blocks = partition_(
begin(boom.states),
end(boom.states), [symbol, depth, &g, &update_succession](state state) {
const auto r = apply(g, state, symbol);
update_succession(state, r.to, depth);
return r.output;
}, Q);
// no split -> continue with other input symbols
if(new_blocks.size() == 1) continue;
// no split -> continue with other input symbols
if (new_blocks.size() == 1) continue;
// not a valid split -> continue
if(!is_valid(new_blocks, symbol)) continue;
// not a valid split -> continue
if (opt.check_validity && !is_valid(new_blocks, symbol)) continue;
// a succesful split, update partition and add the children
boom.seperator = {symbol};
add_push_new_block(new_blocks, boom);
// a succesful split, update partition and add the children
boom.seperator = {symbol};
add_push_new_block(new_blocks, boom);
goto has_split;
}
// Then try to split on state
for(input symbol : all_inputs){
vector<bool> successor_states(N, false);
for(auto && state : boom.states){
successor_states[apply(g, state, symbol).to] = true;
goto has_split;
}
}
const auto & oboom = lca(root, [&successor_states](state state) -> bool{
return successor_states[state];
});
if (!opt.assert_minimal_order || current_order > 0) {
// Then try to split on state
for (input symbol : all_inputs) {
vector<bool> successor_states(N, false);
for (auto && state : boom.states) {
successor_states[apply(g, state, symbol).to] = true;
}
// a leaf, hence not a split -> try other symbols
if(oboom.children.empty()) continue;
const auto & oboom = lca(root, [&successor_states](state state) -> bool {
return successor_states[state];
});
// possibly a succesful split, construct the children
const vector<input> word = concat(vector<input>(1, symbol), oboom.seperator);
const auto new_blocks = partition_(begin(boom.states), end(boom.states), [word, depth, &g, &update_succession](state state){
const mealy::edge r = apply(g, state, word.begin(), word.end());
update_succession(state, r.to, depth);
return r.output;
}, Q);
// a leaf, hence not a split -> try other symbols
if (oboom.children.empty()) continue;
// not a valid split -> continue
if(!is_valid(new_blocks, symbol)) continue;
// If we want to enforce the right order, we should :D
if (opt.assert_minimal_order && oboom.seperator.size() != current_order) continue;
assert(new_blocks.size() > 1);
// possibly a succesful split, construct the children
const vector<input> word = concat(vector<input>(1, symbol), oboom.seperator);
const auto new_blocks = partition_(
begin(boom.states),
end(boom.states), [word, depth, &g, &update_succession](state state) {
const mealy::edge r = apply(g, state, word.begin(), word.end());
update_succession(state, r.to, depth);
return r.output;
}, Q);
// update partition and add the children
boom.seperator = word;
add_push_new_block(new_blocks, boom);
// not a valid split -> continue
if (opt.check_validity && !is_valid(new_blocks, symbol)) continue;
goto has_split;
assert(new_blocks.size() > 1);
// update partition and add the children
boom.seperator = word;
add_push_new_block(new_blocks, boom);
goto has_split;
}
}
// We tried all we could, but did not succeed => declare incompleteness.
if(days_without_progress++ >= work.size()) {
ret.is_complete = false;
return ret;
if (days_without_progress++ >= work.size()) {
if (!split_in_current_order || !opt.assert_minimal_order) {
ret.is_complete = false;
return ret;
}
current_order++;
split_in_current_order = false;
}
work.push(boom);
continue;
has_split:
split_in_current_order = true;
days_without_progress = 0;
}

View file

@ -2,12 +2,9 @@
#include "mealy.hpp"
/*
* A splitting tree as defined in Lee & Yannakakis. The structure is also
* called a derivation tree in Knuutila. Both the classical Hopcroft algorithm
* and the Lee & Yannakakis algorithm produce splitting trees.
*/
/// \brief A splitting tree as defined in Lee & Yannakakis.
/// This is also known as a derivation tree (Knuutila). Both the Gill/Moore/Hopcroft-style and the
/// Lee&Yannakakis-style trees are splitting trees.
struct splitting_tree {
splitting_tree(size_t N, size_t depth);
@ -18,65 +15,59 @@ struct splitting_tree {
mutable int mark = 0; // used for some algorithms...
};
template <typename Fun>
void lca_impl1(splitting_tree const & node, Fun && f){
template <typename Fun> void lca_impl1(splitting_tree const & node, Fun && f) {
node.mark = 0;
if(!node.children.empty()){
for(auto && c : node.children){
if (!node.children.empty()) {
for (auto && c : node.children) {
lca_impl1(c, f);
if(c.mark) node.mark++;
if (c.mark) node.mark++;
}
} else {
for(auto && s : node.states){
if(f(s)) node.mark++;
for (auto && s : node.states) {
if (f(s)) node.mark++;
}
}
}
splitting_tree & lca_impl2(splitting_tree & node);
template <typename Fun>
splitting_tree & lca(splitting_tree & root, Fun && f){
/// \brief Find the lowest common ancestor of elements on which \p f returns true.
template <typename Fun> splitting_tree & lca(splitting_tree & root, Fun && f) {
static_assert(std::is_same<decltype(f(0)), bool>::value, "f should return a bool");
lca_impl1(root, f);
return lca_impl2(root);
}
template <typename Fun>
const splitting_tree & lca(const splitting_tree & root, Fun && f){
template <typename Fun> const splitting_tree & lca(const splitting_tree & root, Fun && f) {
static_assert(std::is_same<decltype(f(0)), bool>::value, "f should return a bool");
lca_impl1(root, f);
return lca_impl2(const_cast<splitting_tree&>(root));
return lca_impl2(const_cast<splitting_tree &>(root));
}
/*
* The algorithm to create a splitting tree can be altered in some ways. This
* struct provides options to the algorithm. There are two common setups.
*/
/// \brief Structure contains options to alter the splitting tree creation.
/// \p check_validity checks whether the transition/output map is injective on the current set of
/// nodes which is being split. Setting this false degenerates to generating pairwise separating
/// sequences. \p assert_minimal_order is used to produce minimal (pairwise) separating sequences.
/// \p cach_succesors is needed by the second step in the LY algorithm and \p randomized randomizes
/// the loops over the alphabet.
struct options {
bool check_validity;
bool assert_minimal_order;
bool cache_succesors;
bool randomized;
};
const options lee_yannakakis_style = {true, true, false};
const options hopcroft_style = {false, false, false};
const options randomized_lee_yannakakis_style = {true, true, true};
const options randomized_hopcroft_style = {false, false, true};
/*
* The algorithm to create a splitting tree also produces some other useful
* data. This struct captures exactly that.
*/
const options lee_yannakakis_style = {true, false, true, false};
const options hopcroft_style = {false, false, false, false};
const options min_hopcroft_style = {false, true, false, false};
const options randomized_lee_yannakakis_style = {true, false, true, true};
const options randomized_hopcroft_style = {false, false, false, true};
const options randomized_min_hopcroft_style = {false, true, false, true};
/// \brief The algorithm produces more than just a splitting tree, all results are put here.
struct result {
result(size_t N)
: root(N, 0)
, successor_cache()
, is_complete(true)
{}
result(size_t N) : root(N, 0), successor_cache(), is_complete(N <= 1) {}
// The splitting tree as described in Lee & Yannakakis
splitting_tree root;
@ -88,4 +79,6 @@ struct result {
bool is_complete;
};
/// \brief Creates a splitting tree by partition refinement.
/// \returns a splitting tree and other calculated structures.
result create_splitting_tree(mealy const & m, options opt);

View file

@ -13,20 +13,25 @@
using namespace std;
int main(int argc, char * argv[]) {
if (argc != 2) return 1;
if (argc != 4) return 1;
const string filename = argv[1];
const size_t k_max = 1;
const string mode = argv[2];
const bool use_no_LY = mode == "--W-method";
const size_t k_max = std::stoul(argv[3]);
const auto machine = read_mealy_from_dot(filename).first;
auto sequence_fut = async([&] {
if (use_no_LY) {
return create_adaptive_distinguishing_sequence(result(machine.graph_size));
}
const auto tree = create_splitting_tree(machine, randomized_lee_yannakakis_style);
return create_adaptive_distinguishing_sequence(tree);
});
auto pairs_fut = async([&] {
const auto tree = create_splitting_tree(machine, randomized_hopcroft_style);
const auto tree = create_splitting_tree(machine, randomized_min_hopcroft_style);
return create_all_pair_seperating_sequences(tree.root);
});