1
Fork 0
mirror of https://github.com/Jaxan/hybrid-ads.git synced 2025-04-27 15:07:45 +02:00

Splits the main file in more files.

This commit is contained in:
Joshua Moerman 2015-02-20 16:50:31 +01:00
parent e2b9910375
commit 3a5d5cc551
16 changed files with 440 additions and 356 deletions

View file

@ -0,0 +1,23 @@
#pragma once
#include "mealy.hpp"
#include <vector>
#include <utility>
struct dist_seq {
dist_seq(size_t N, size_t depth)
: CI(N)
, depth(depth)
{
for(size_t i = 0; i < N; ++i)
CI[i] = {i, i};
}
// current, initial
std::vector<std::pair<state, state>> CI;
std::vector<input> word;
std::vector<dist_seq> children;
size_t depth;
};

View file

@ -0,0 +1,85 @@
#include "create_adaptive_distinguishing_sequence.hpp"
#include "logging.hpp"
#include "splitting_tree.hpp"
#include <algorithm>
#include <functional>
#include <iostream>
#include <queue>
#include <vector>
using namespace std;
result2 create_adaptive_distinguishing_sequence(const result & splitting_tree){
const auto & root = splitting_tree.root;
const auto & succession = splitting_tree.successor_cache;
const auto N = root.states.size();
result2 r(N);
auto & root_seq = r.sequence;
{
queue<reference_wrapper<dist_seq>> work2;
work2.push(root_seq);
while(!work2.empty()){
dist_seq & node = work2.front();
work2.pop();
if(node.CI.size() < 2) continue;
if(node.depth > 500) continue;
vector<bool> states(N, false);
for(auto && state : node.CI){
states[state.first.base()] = true;
}
const auto & oboom = lca(root, [&states](state state) -> bool{
return states[state.base()];
});
if(oboom.children.empty()) continue;
node.word = oboom.seperator;
for(auto && c : oboom.children){
dist_seq new_c(0, node.depth + 1);
size_t i = 0;
size_t j = 0;
while(i < node.CI.size() && j < c.states.size()){
if(node.CI[i].first < c.states[j]) {
i++;
} else if(node.CI[i].first > c.states[j]) {
j++;
} else {
const auto curr = succession[oboom.depth][node.CI[i].first.base()];
const auto init = node.CI[i].second;
new_c.CI.push_back({curr, init});
i++;
j++;
}
}
// woops. fixme
sort(begin(new_c.CI), end(new_c.CI));
if(!new_c.CI.empty()){
node.children.push_back(move(new_c));
}
}
// FIXME: can not happen????
if(node.children.size() == 1) {
fire_once([]{ cerr << "WARNING: Only one child in dist seq\n"; });
continue;
}
for(auto & c : node.children) {
work2.push(c);
}
}
}
return r;
}

View file

@ -0,0 +1,16 @@
#pragma once
#include "adaptive_distinguishing_sequence.hpp"
#include "create_splitting_tree.hpp"
struct result2 {
result2(size_t N)
: sequence(N, 0)
{}
// The adaptive distinguishing sequence as described in Lee & Yannakakis
// This is really a tree!
dist_seq sequence;
};
result2 create_adaptive_distinguishing_sequence(result const & splitting_tree);

View file

@ -0,0 +1,153 @@
#include "create_splitting_tree.hpp"
#include "logging.hpp"
#include <functional>
#include <iostream>
#include <queue>
#include <utility>
using namespace std;
template <typename T>
std::vector<T> concat(std::vector<T> const & l, std::vector<T> const & r){
std::vector<T> ret(l.size() + r.size());
auto it = copy(begin(l), end(l), begin(ret));
copy(begin(r), end(r), it);
return ret;
}
result create_splitting_tree(const Mealy& g){
const auto N = g.graph.size();
const auto P = g.input_indices.size();
const auto Q = g.output_indices.size();
result r(N);
auto & part = r.partition;
auto & root = r.root;
auto & succession = r.successor_cache;
/* We'll use a queue to keep track of leaves we have to investigate;
* In some cases we cannot split, and have to wait for other parts of the
* tree. We keep track of how many times we did no work. If this is too
* much, there is no complete splitting tree.
*/
queue<pair<partition_refine::BlockRef, reference_wrapper<splijtboom>>> work;
size_t days_without_progress = 0;
// Some lambda functions capturing some state, makes the code a bit easier :)
const auto push = [&work](auto br, auto & sp) { work.push({br, sp}); };
const auto pop = [&work]() { const auto r = work.front(); work.pop(); return r; };
const auto add_push_new_block = [&](auto new_blocks, auto & boom) {
const auto nb = distance(new_blocks.first, new_blocks.second);
boom.children.assign(nb, splijtboom(0, boom.depth + 1));
auto i = 0;
while(new_blocks.first != new_blocks.second){
for(auto && s : *new_blocks.first){
boom.children[i].states.push_back(s);
}
push(new_blocks.first++, boom.children[i++]);
}
};
const auto is_valid = [N, &g](auto blocks, auto symbol){
for(auto && block : blocks) {
partition_refine s_part(block);
const auto new_blocks = s_part.refine(*s_part.begin(), [symbol, &g](state state){
return apply(g, state, symbol).to.base();
}, N);
for(auto && new_block : new_blocks){
if(distance(new_block.begin(), new_block.end()) != 1) return false;
}
}
return true;
};
const auto update_succession = [N, &succession](state s, state t, size_t depth){
if(succession.size() < depth+1) succession.resize(depth+1, vector<state>(N, -1));
succession[depth][s.base()] = t;
};
// We'll start with the root, obviously
push(part.begin(), root);
while(!work.empty()){
const auto block_boom = pop();
const auto block = block_boom.first;
splijtboom & boom = block_boom.second;
const auto depth = boom.depth;
if(boom.states.size() == 1) continue;
// First try to split on output
for(input symbol = 0; symbol < P; ++symbol){
const auto new_blocks = part.refine(*block, [symbol, depth, &g, &update_succession](state state){
const auto ret = apply(g, state, symbol);
update_succession(state, ret.to, depth);
return ret.output.base();
}, Q);
// no split -> continue with other input symbols
if(new_blocks.size() == 1) continue;
// not a valid split -> continue
if(!is_valid(new_blocks, symbol)) continue;
// a succesful split, update partition and add the children
boom.seperator = {symbol};
const auto range = part.replace(block, move(new_blocks));
add_push_new_block(range, boom);
goto has_split;
}
// Then try to split on state
for(input symbol = 0; symbol < P; ++symbol){
vector<bool> successor_states(N, false);
for(auto && state : *block){
successor_states[apply(g, state, symbol).to.base()] = true;
}
const auto & oboom = lca(root, [&successor_states](state state) -> bool{
return successor_states[state.base()];
});
// a leaf, hence not a split -> try other symbols
if(oboom.children.empty()) continue;
// possibly a succesful split, construct the children
const auto word = concat({symbol}, oboom.seperator);
const auto new_blocks = part.refine(*block, [word, depth, &g, &update_succession](state state){
const auto ret = apply(g, state, begin(word), end(word));
update_succession(state, ret.to, depth);
return ret.output.base();
}, Q);
// not a valid split -> continue
if(!is_valid(new_blocks, symbol)) continue;
if(new_blocks.size() == 1){
fire_once([]{ cerr << "WARNING: Refinement did not give finer partition, can not happen\n"; });
continue;
}
// update partition and add the children
boom.seperator = word;
const auto range = part.replace(block, move(new_blocks));
add_push_new_block(range, boom);
goto has_split;
}
// We tried all we could, but did not succeed => declare incompleteness.
if(days_without_progress++ >= work.size()) {
r.is_complete = false;
return r;
}
push(block, boom);
continue;
has_split:
days_without_progress = 0;
}
return r;
}

View file

@ -0,0 +1,30 @@
#pragma once
#include "mealy.hpp"
#include "partition.hpp"
#include "splitting_tree.hpp"
#include <vector>
struct result {
result(size_t N)
: root(N, 0)
, partition(N)
, successor_cache()
, is_complete(true)
{}
// The splitting tree as described in Lee & Yannakakis
splijtboom root;
// The running partition of states
partition_refine partition;
// Encodes f_u : depth -> state -> state, where only the depth of u is of importance
std::vector<std::vector<state>> successor_cache;
// false <-> no adaptive distinguishing sequence
bool is_complete;
};
result create_splitting_tree(Mealy const & m);

10
lib/logging.hpp Normal file
View file

@ -0,0 +1,10 @@
#pragma once
#include <mutex>
// Works particularly nice with lambda's, as they give naturally unique types :)
template <typename F>
void fire_once(F && f){
static std::once_flag flag;
std::call_once(flag, f);
}

View file

@ -6,6 +6,9 @@
#include <string>
#include <vector>
/* We use size_t's for easy indexing. But we do not want to mix states and
* inputs. We use phantom typing to "generate" distinguished types :).
*/
using state = phantom<size_t, struct state_tag>;
using input = phantom<size_t, struct input_tag>;
using output = phantom<size_t, struct output_tag>;

View file

@ -6,8 +6,6 @@
#include <utility>
#include <vector>
#include <iostream>
using Elements = std::list<size_t>;
struct Block {

View file

@ -1,9 +1,7 @@
#include "read_mealy_from_dot.hpp"
#include "mealy.hpp"
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
@ -16,7 +14,7 @@ T get(istream& in){
return t;
}
Mealy read_mealy_from_dot(istream& in, int verbose){
Mealy read_mealy_from_dot(istream& in){
Mealy m;
string line;
@ -43,10 +41,6 @@ Mealy read_mealy_from_dot(istream& in, int verbose){
const auto slash = get<string>(ss);
const auto output = get<string>(ss);
if(verbose >= 2){
cout << lh << '\t' << rh << '\t' << input << '\t' << output << endl;
}
// make fresh indices, if needed
if(m.nodes_indices.count(lh) < 1) m.nodes_indices[lh] = m.graph_size++;
if(m.nodes_indices.count(rh) < 1) m.nodes_indices[rh] = m.graph_size++;
@ -60,20 +54,10 @@ Mealy read_mealy_from_dot(istream& in, int verbose){
v[m.input_indices[input].base()] = {m.nodes_indices[rh], m.output_indices[output]};
}
if(verbose >= 1){
cout << "input_alphabet = \n";
for(auto && i : m.input_indices) cout << i.first << " ";
cout << endl;
cout << "output_alphabet = \n";
for(auto && o : m.output_indices) cout << o.first << " ";
cout << endl;
}
return m;
}
Mealy read_mealy_from_dot(const string& filename, int verbose){
Mealy read_mealy_from_dot(const string& filename){
ifstream file(filename);
return read_mealy_from_dot(file, verbose);
return read_mealy_from_dot(file);
}

View file

@ -3,5 +3,5 @@
#include <iosfwd>
struct Mealy;
Mealy read_mealy_from_dot(const std::string & filename, int verbose);
Mealy read_mealy_from_dot(std::istream & input, int verbose);
Mealy read_mealy_from_dot(const std::string & filename);
Mealy read_mealy_from_dot(std::istream & input);

View file

@ -18,11 +18,11 @@ struct splijtboom {
std::vector<splijtboom> children;
std::vector<input> seperator;
size_t depth = 0;
int mark = 0; // used for some algorithms...
mutable int mark = 0; // used for some algorithms...
};
template <typename Fun>
void lca_impl1(splijtboom & node, Fun && f){
void lca_impl1(splijtboom const & node, Fun && f){
node.mark = 0;
if(!node.children.empty()){
for(auto && c : node.children){
@ -50,3 +50,10 @@ splijtboom & lca(splijtboom & root, Fun && f){
lca_impl1(root, f);
return lca_impl2(root);
}
template <typename Fun>
const splijtboom & lca(const splijtboom & root, Fun && f){
static_assert(std::is_same<decltype(f(0)), bool>::value, "f should return a bool");
lca_impl1(root, f);
return lca_impl2(const_cast<splijtboom&>(root));
}

View file

@ -1,52 +0,0 @@
#include "write_splitting_tree_to_dot.hpp"
#include "splitting_tree.hpp"
#include <fstream>
#include <functional>
#include <ostream>
#include <queue>
#include <utility>
using namespace std;
template <typename T>
ostream & operator<<(ostream& out, vector<T> const & x){
if(x.empty()) return out;
auto it = begin(x);
out << *it++;
while(it != end(x)) out << " " << *it++;
return out;
}
void write_splitting_tree_to_dot(const splijtboom& root, ostream& out){
out << "digraph splijtboom {\n";
// breadth first
int global_id = 0;
queue<pair<int, reference_wrapper<const splijtboom>>> work;
work.push({global_id++, root});
while(!work.empty()){
const auto id = work.front().first;
const splijtboom & node = work.front().second;
work.pop();
out << "\n\ts" << id << " [label=\"" << node.states;
if(!node.seperator.empty()) out << "\\n" << node.seperator;
out << "\"];\n";
for(auto && c : node.children){
int new_id = global_id++;
out << "\ts" << id << " -> " << "s" << new_id << ";\n";
work.push({new_id, c});
}
}
out << "}" << endl;
}
void write_splitting_tree_to_dot(const splijtboom& root, const string& filename){
ofstream file(filename);
write_splitting_tree_to_dot(root, file);
}

View file

@ -1,8 +0,0 @@
#pragma once
#include <iosfwd>
struct splijtboom;
void write_splitting_tree_to_dot(const splijtboom & root, std::ostream & out);
void write_splitting_tree_to_dot(const splijtboom & root, std::string const & filename);

49
lib/write_tree_to_dot.cpp Normal file
View file

@ -0,0 +1,49 @@
#include "write_tree_to_dot.hpp"
#include "adaptive_distinguishing_sequence.hpp"
#include "splitting_tree.hpp"
#include <fstream>
using namespace std;
template <typename T>
ostream & operator<<(ostream& out, vector<T> const & x){
if(x.empty()) return out;
auto it = begin(x);
out << *it++;
while(it != end(x)) out << " " << *it++;
return out;
}
void write_splitting_tree_to_dot(const splijtboom& root, ostream& out){
write_tree_to_dot(root, [](const splijtboom & node, ostream& out){
out << node.states;
if(!node.seperator.empty()){
out << "\\n" << node.seperator;
}
}, out);
}
void write_splitting_tree_to_dot(const splijtboom& root, const string& filename){
ofstream file(filename);
write_splitting_tree_to_dot(root, file);
}
void write_adaptive_distinguishing_sequence_to_dot(const dist_seq & root, ostream & out){
write_tree_to_dot(root, [](const dist_seq & node, ostream& out){
if(!node.word.empty()){
out << node.word;
} else {
vector<state> I(node.CI.size());
transform(begin(node.CI), end(node.CI), begin(I), [](auto p){ return p.second; });
out << "I = " << I;
}
}, out);
}
void write_adaptive_distinguishing_sequence_to_dot(const dist_seq & root, string const & filename){
ofstream file(filename);
write_adaptive_distinguishing_sequence_to_dot(root, file);
}

45
lib/write_tree_to_dot.hpp Normal file
View file

@ -0,0 +1,45 @@
#pragma once
#include <functional>
#include <ostream>
#include <queue>
#include <utility>
// Generic printer for tree
template <typename T, typename NodeString>
void write_tree_to_dot(const T & tree, NodeString && node_string, std::ostream & out){
using namespace std;
out << "digraph g {\n";
// breadth first
int global_id = 0;
queue<pair<int, reference_wrapper<const T>>> work;
work.push({global_id++, tree});
while(!work.empty()){
const auto id = work.front().first;
const T & node = work.front().second;
work.pop();
out << "\n\ts" << id << " [label=\"";
node_string(node, out);
out << "\"];\n";
for(auto && c : node.children){
int new_id = global_id++;
out << "\ts" << id << " -> " << "s" << new_id << ";\n";
work.push({new_id, c});
}
}
out << "}" << endl;
}
// Specialized printing for splitting trees and dist seqs
struct splijtboom;
void write_splitting_tree_to_dot(const splijtboom & root, std::ostream & out);
void write_splitting_tree_to_dot(const splijtboom & root, std::string const & filename);
struct dist_seq;
void write_adaptive_distinguishing_sequence_to_dot(const dist_seq & root, std::ostream & out);
void write_adaptive_distinguishing_sequence_to_dot(const dist_seq & root, std::string const & filename);

View file

@ -1,297 +1,38 @@
#include <mealy.hpp>
#include <partition.hpp>
#include <create_adaptive_distinguishing_sequence.hpp>
#include <create_splitting_tree.hpp>
#include <read_mealy_from_dot.hpp>
#include <splitting_tree.hpp>
#include <write_splitting_tree_to_dot.hpp>
#include <write_tree_to_dot.hpp>
#include <algorithm>
#include <cassert>
#include <fstream>
#include <iostream>
#include <iterator>
#include <queue>
#include <utility>
using namespace std;
template <typename T>
ostream & operator<<(ostream& out, vector<T> const & x){
if(x.empty()) return out;
auto it = begin(x);
out << *it++;
while(it != end(x)) out << " " << *it++;
return out;
}
int verbose = 0;
template <typename T>
std::vector<T> concat(std::vector<T> const & l, std::vector<T> const & r){
std::vector<T> ret(l.size() + r.size());
auto it = copy(begin(l), end(l), begin(ret));
copy(begin(r), end(r), it);
return ret;
}
int main(int argc, char *argv[]){
if(argc < 2) return 1;
if(argc > 2) verbose = argc - 2;
if(argc != 2) return 1;
const string filename = argv[1];
cerr << "* Reading file " << filename << "\n";
const auto g = read_mealy_from_dot(filename, verbose);
assert(is_complete(g));
const auto machine = read_mealy_from_dot(filename);
assert(is_complete(machine));
cerr << "\tdone\n";
const auto N = g.graph.size();
const auto P = g.input_indices.size();
const auto Q = g.output_indices.size();
cerr << "* Setting up strucutres\n";
partition_refine part(N);
splijtboom root(N, 0);
vector<vector<state>> succession;
queue<pair<partition_refine::BlockRef, reference_wrapper<splijtboom>>> work;
const auto push = [&work](auto br, auto & sp) { work.push({br, sp}); };
const auto pop = [&work]() { const auto r = work.front(); work.pop(); return r; };
const auto add_push_new_block = [&](auto new_blocks, auto & boom) {
const auto nb = distance(new_blocks.first, new_blocks.second);
boom.children.assign(nb, splijtboom(0, boom.depth + 1));
auto i = 0;
while(new_blocks.first != new_blocks.second){
for(auto && s : *new_blocks.first){
boom.children[i].states.push_back(s);
}
push(new_blocks.first++, boom.children[i++]);
}
if(verbose){
cout << "splitted output into " << nb << endl;
}
};
const auto is_valid = [N, &g](auto blocks, auto symbol){
for(auto && block : blocks) {
partition_refine s_part(block);
const auto new_blocks = s_part.refine(*s_part.begin(), [symbol, &g](state state){
return apply(g, state, symbol).to.base();
}, N);
for(auto && new_block : new_blocks){
if(distance(new_block.begin(), new_block.end()) != 1) return false;
}
}
return true;
};
const auto update_succession = [N, &succession](state s, state t, size_t depth){
if(succession.size() < depth+1) succession.resize(depth+1, vector<state>(N, -1));
succession[depth][s.base()] = t;
};
push(part.begin(), root);
cerr << "\tdone\n";
size_t days_without_progress = 0;
string filename_thingy;
cerr << "* Starting Lee & Yannakakis I\n";
while(!work.empty()){
const auto block_boom = pop();
const auto block = block_boom.first;
splijtboom & boom = block_boom.second;
const auto depth = boom.depth;
if(verbose){
cout << "current\t";
for(auto s : boom.states) cout << s << " ";
cout << endl;
}
if(boom.states.size() == 1) continue;
// First try to split on output
for(input symbol = 0; symbol < P; ++symbol){
const auto new_blocks = part.refine(*block, [symbol, depth, &g, &update_succession](state state){
const auto ret = apply(g, state, symbol);
update_succession(state, ret.to, depth);
return ret.output.base();
}, Q);
// no split -> continue with other input symbols
if(new_blocks.size() == 1) continue;
// not a valid split -> continue
if(!is_valid(new_blocks, symbol)) continue;
// a succesful split, update partition and add the children
boom.seperator = {symbol};
const auto range = part.replace(block, move(new_blocks));
add_push_new_block(range, boom);
goto has_split;
}
// Then try to split on state
for(input symbol = 0; symbol < P; ++symbol){
vector<bool> successor_states(N, false);
for(auto && state : *block){
successor_states[apply(g, state, symbol).to.base()] = true;
}
const auto & oboom = lca(root, [&successor_states](state state) -> bool{
return successor_states[state.base()];
});
// a leaf, hence not a split -> try other symbols
if(oboom.children.empty()) continue;
// possibly a succesful split, construct the children
const auto word = concat({symbol}, oboom.seperator);
const auto new_blocks = part.refine(*block, [word, depth, &g, &update_succession](state state){
const auto ret = apply(g, state, begin(word), end(word));
update_succession(state, ret.to, depth);
return ret.output.base();
}, Q);
// not a valid split -> continue
if(!is_valid(new_blocks, symbol)) continue;
if(new_blocks.size() == 1){
// cerr << "WARNING: Refinement did not give finer partition, can not happen\n";
continue;
}
// update partition and add the children
boom.seperator = word;
const auto range = part.replace(block, move(new_blocks));
add_push_new_block(range, boom);
goto has_split;
}
// cout << "no split :(" << endl;
if(days_without_progress++ >= work.size()) {
filename_thingy = "incomplete_";
cerr << "\t* No distinguishing seq found!\n";
break;
}
push(block, boom);
continue;
has_split:
// cout << "blocks: " << part.size() << ", states: " << N << ", work: " << work.size() << endl;
days_without_progress = 0;
}
const auto splitting_tree = create_splitting_tree(machine);
cerr << "\tdone\n";
cerr << "* Write splitting tree\n";
write_splitting_tree_to_dot(root, filename + "." + filename_thingy + "splitting_tree");
const string tree_filename = splitting_tree.is_complete ? (filename + ".splitting_tree") : (filename + ".incomplete_splitting_tree");
write_splitting_tree_to_dot(splitting_tree.root, tree_filename);
cerr << "\tdone\n";
struct dist_seq {
dist_seq(size_t N)
: I(N)
, C(I)
{
iota(begin(I), end(I), 0);
iota(begin(C), end(C), 0);
}
vector<state> I;
vector<state> C;
vector<input> word;
vector<dist_seq> children;
} root_seq(N);
cerr << "* Lee and Yannakaki II\n";
{
queue<reference_wrapper<dist_seq>> work2;
work2.push(root_seq);
while(!work2.empty()){
dist_seq & node = work2.front();
work2.pop();
if(node.C.size() < 2) continue;
vector<bool> states(N, false);
for(auto && state : node.C){
states[state.base()] = true;
}
const auto & oboom = lca(root, [&states](state state) -> bool{
return states[state.base()];
});
if(oboom.children.empty()) continue;
node.word = oboom.seperator;
for(auto && c : oboom.children){
dist_seq new_c(0);
size_t i = 0;
size_t j = 0;
while(i < node.C.size() && j < c.states.size()){
if(node.C[i] < c.states[j]) {
i++;
} else if(node.C[i] > c.states[j]) {
j++;
} else {
new_c.I.push_back(node.I[i]);
new_c.C.push_back(succession[oboom.depth][node.C[i].base()]);
i++;
j++;
}
}
// woops. fixme
sort(begin(new_c.C), end(new_c.C));
if(!new_c.C.empty()){
node.children.push_back(move(new_c));
}
}
for(auto & c : node.children) {
work2.push(c);
}
}
}
const auto distinguishing_sequence = create_adaptive_distinguishing_sequence(splitting_tree);
cerr << "\tdone\n";
cerr << "* Write dist sequence\n";
{
ofstream out(filename + "." + filename_thingy + "dist_seq");
out << "digraph distinguishing_sequence {\n";
// breadth first
int global_id = 0;
queue<pair<int, reference_wrapper<const dist_seq>>> work3;
work3.push({global_id++, root_seq});
while(!work3.empty()){
const auto id = work3.front().first;
const dist_seq & node = work3.front().second;
work3.pop();
if(!node.word.empty()){
out << "\n\ts" << id << " [label=\"" << node.word << "\"];\n";
} else {
out << "\n\ts" << id << " [label=\"I = " << node.I << "\"];\n";
}
for(auto && c : node.children){
int new_id = global_id++;
out << "\ts" << id << " -> " << "s" << new_id << ";\n";
work3.push({new_id, c});
}
}
out << "}" << endl;
}
const string dseq_filename = splitting_tree.is_complete ? (filename + ".dist_seq") : (filename + ".incomplete_dist_seq");
write_adaptive_distinguishing_sequence_to_dot(distinguishing_sequence.sequence, dseq_filename);
cerr << "\tdone\n" << endl;
}