1
Fork 0
mirror of https://github.com/Jaxan/hybrid-ads.git synced 2025-04-27 23:17:44 +02:00

generalised a bit and uses trie now

This commit is contained in:
Joshua Moerman 2015-04-17 18:35:27 +02:00
parent b6033eec4c
commit 69942cd683
5 changed files with 89 additions and 51 deletions

View file

@ -8,11 +8,8 @@
using namespace std;
adaptive_distinguishing_sequence::adaptive_distinguishing_sequence(size_t N, size_t d)
: CI(N)
, depth(d)
{
for(size_t i = 0; i < N; ++i)
CI[i] = {i, i};
: CI(N), depth(d) {
for (size_t i = 0; i < N; ++i) CI[i] = {i, i};
}
adaptive_distinguishing_sequence create_adaptive_distinguishing_sequence(const result & splitting_tree){

View file

@ -1,4 +1,5 @@
#include "seperating_family.hpp"
#include "trie.hpp"
#include <boost/range/algorithm.hpp>
#include <boost/range/algorithm_ext/erase.hpp>
@ -9,48 +10,73 @@
using namespace std;
seperating_family create_seperating_family(const adaptive_distinguishing_sequence & sequence, const seperating_matrix & all_pair_seperating_sequences){
seperating_family seperating_family(all_pair_seperating_sequences.size());
characterization_family create_seperating_family(const adaptive_distinguishing_sequence & sequence,
const seperating_matrix & sep_matrix) {
const auto N = sequence.CI.size();
// all words (global/local) for all states
vector<trie> suffixes(N);
// all global separating sequences, which we will add to a state in the end ...
trie all_global_separating_words;
// ... to these particualr states
vector<bool> state_needs_global_suffixes(N, false);
// First we accumulate the kind-of-UIOs and the separating words we need. We will do this with a
// breath first search.
stack<pair<word, reference_wrapper<const adaptive_distinguishing_sequence>>> work;
work.push({{}, sequence});
while (!work.empty()) {
auto word = work.top().first;
const adaptive_distinguishing_sequence & node = work.top().second;
work.pop();
// On a leaf, we need to add the accumulated word as suffix (this is more or less a UIO).
// And, if needed, we also need to augment the set of suffixes (for all pairs).
if (node.children.empty()) {
// add sequence to this leave
for (auto && p : node.CI) {
const auto state = p.second;
seperating_family[state].push_back(word);
suffixes[state].insert(word);
}
// if the leaf is not a singleton, we need the all_pair seperating seqs
for (auto && p : node.CI) {
for (auto && q : node.CI) {
const auto s = p.second;
const auto t = q.second;
if (s == t) continue;
seperating_family[s].push_back(all_pair_seperating_sequences[s][t]);
const auto & sep_word = sep_matrix[s][t];
suffixes[s].insert(sep_word);
all_global_separating_words.insert(sep_word);
state_needs_global_suffixes[s] = true;
}
}
continue;
}
for(auto && i : node.word)
word.push_back(i);
for(auto && c : node.children)
work.push({word, c});
// add some work
for (auto && i : node.word) word.push_back(i); // extend the word
for (auto && c : node.children) work.push({word, c}); // and visit the children with word
}
// Remove duplicates
for(auto & vec : seperating_family){
boost::erase(vec, boost::unique<boost::return_found_end>(boost::sort(vec)));
// Then we flatten them into a characterization family.
characterization_family ret(N);
for (state s = 0; s < N; ++s) {
auto & current_suffixes = suffixes[s];
ret[s].local_suffixes = flatten(current_suffixes);
if (state_needs_global_suffixes[s]) {
all_global_separating_words.for_each(
[&current_suffixes](auto w) { current_suffixes.insert(w); });
}
return seperating_family;
ret[s].global_suffixes = flatten(current_suffixes);
}
return ret;
}

View file

@ -4,14 +4,26 @@
#include "seperating_matrix.hpp"
#include "types.hpp"
/*
* Given an (incomplete) adaptive distinguishing sequence and all pair
* seperating sequences, we can construct a seperating family (as defined
* in Lee & Yannakakis). If the adaptive distinguishing sequence is complete,
* then the all pair seperating sequences are not needed.
*/
/// \brief From the LY algorithm we generate characterizations sets (as in the Chow framework)
/// If the adaptive distinguihsing sequence is complete, then we do not need to augment the LY
/// result. This results in a separating family, which is stronger than a characterization set.
/// However, if it is not complete, we augment it with sequences from the Wp-method.
using seperating_set = std::vector<word>;
using seperating_family = std::vector<seperating_set>;
/// \brief A set (belonging to some state) of characterizing sequences
/// It contains global_suffixes which should be used for testing whether the state is correct. Once
/// we know the states make sense, we can test the transitions with the smaller set local_suffixes.
/// There is some redundancy in this struct, but we have plenty of memory at our disposal.
/// Note that even the global_suffixes may really on the state (because of the adaptiveness of the
/// LY distinguishing sequence).
struct characterization_set {
std::vector<word> global_suffixes;
std::vector<word> local_suffixes;
};
seperating_family create_seperating_family(adaptive_distinguishing_sequence const & sequence, seperating_matrix const & all_pair_seperating_sequences);
/// \brief A family (indexed by states) of characterizations
using characterization_family = std::vector<characterization_set>;
/// \brief Creates the characterization family from the results of the LY algorithm
/// If the sequence is complete, we do not need the separating_matrix
characterization_family create_seperating_family(const adaptive_distinguishing_sequence & sequence,
const seperating_matrix & sep_matrix);

View file

@ -43,19 +43,22 @@ struct trie {
/// \brief Inserts a word given as range \p r
/// \returns true if the element was inserted, false if already there
template <typename Range> bool insert(Range const& r) {
return insert(begin(r), end(r));
}
template <typename Range> bool insert(Range const & r) { return insert(begin(r), end(r)); }
/// \p function is applied to all word (not to the prefixes)
/// \brief Applies \p function to all word (not to the prefixes)
template <typename Fun> void for_each(Fun && function) const {
std::vector<size_t> word;
return for_each_impl(std::forward<Fun>(function), word);
}
/// \brief Empties the complete set
void clear() {
count = 0;
branches.clear();
}
private:
template <typename Fun>
void for_each_impl(Fun&& function, std::vector<size_t>& word) const {
template <typename Fun> void for_each_impl(Fun && function, std::vector<size_t> & word) const {
if (count == 0) {
const auto & cword = word;
function(cword); // we don't want function to modify word

View file

@ -183,7 +183,7 @@ int main(int argc, char *argv[]) try {
for(state s = 0; s < machine.graph_size; ++s){
const auto prefix = transfer_sequences[s];
for(auto && suffix : seperating_family[s]){
for(auto && suffix : seperating_family[s].local_suffixes){
for(auto && r : all_sequences){
print_word(prefix);
print_word(r);
@ -226,7 +226,7 @@ int main(int argc, char *argv[]) try {
}
using params = uniform_int_distribution<size_t>::param_type;
const auto & suffixes = seperating_family[current_state];
const auto & suffixes = seperating_family[current_state].local_suffixes;
const auto & s = suffixes[suffix_selection(generator, params{0, suffixes.size()-1})];
print_word(p);