1
Fork 0
mirror of https://github.com/Jaxan/hybrid-ads.git synced 2025-04-27 15:07:45 +02:00

Removes some duplicate words. Adds conformance to java interface. Adds randomization

This commit is contained in:
Joshua Moerman 2015-03-13 18:03:27 +01:00
parent c4625bf775
commit e4a7cf9933
11 changed files with 270 additions and 74 deletions

View file

@ -34,3 +34,9 @@ struct timer{
return s.count();
}
};
// has same signature, but does not log :)
struct silent_timer {
silent_timer(std::string){}
void stop();
};

View file

@ -46,10 +46,20 @@ inline auto apply(mealy const & m, state state, input input){
template <typename Iterator>
auto apply(mealy const & m, state state, Iterator b, Iterator e){
mealy::edge ret;
mealy::edge ret{state, -1};
while(b != e){
ret = apply(m, state, *b++);
state = ret.to;
}
return ret;
}
// Used to invert the input_indices and output_indices maps
template <typename T>
std::vector<std::string> create_reverse_map(std::map<std::string, T> const & indices){
std::vector<std::string> ret(indices.size());
for(auto&& p : indices){
ret[p.second.base()] = p.first;
}
return ret;
}

View file

@ -1,10 +1,13 @@
#include "read_mealy_from_dot.hpp"
#include "mealy.hpp"
#include <cassert>
#include <fstream>
#include <sstream>
#include <string>
#include <iostream>
using namespace std;
template <typename T>
@ -56,6 +59,10 @@ mealy read_mealy_from_dot(istream& in){
v[m.input_indices[input].base()] = {m.nodes_indices[rh], m.output_indices[output]};
}
assert(m.graph_size > 0);
assert(m.input_size > 0);
assert(m.output_size > 0);
assert(is_complete(m));
return m;
}

View file

@ -1,5 +1,8 @@
#include "seperating_family.hpp"
#include <boost/range/algorithm.hpp>
#include <boost/range/algorithm_ext/erase.hpp>
#include <functional>
#include <stack>
#include <utility>
@ -44,5 +47,10 @@ seperating_family create_seperating_family(const adaptive_distinguishing_sequenc
work.push({word, c});
}
// Remove duplicates
for(auto & vec : seperating_family){
boost::erase(vec, boost::unique<boost::return_found_end>(boost::sort(vec)));
}
return seperating_family;
}

View file

@ -24,14 +24,6 @@ splitting_tree &lca_impl2(splitting_tree & node){
return node; // this is a leaf
}
template <typename T>
std::vector<T> concat(std::vector<T> const & l, std::vector<T> const & r){
std::vector<T> ret(l.size() + r.size());
auto it = copy(begin(l), end(l), begin(ret));
copy(begin(r), end(r), it);
return ret;
}
result create_splitting_tree(const mealy& g, options opt){
const auto N = g.graph.size();
const auto P = g.input_indices.size();

View file

@ -13,7 +13,7 @@ struct splitting_tree {
std::vector<state> states;
std::vector<splitting_tree> children;
std::vector<input> seperator;
word seperator;
size_t depth = 0;
mutable int mark = 0; // used for some algorithms...
};

View file

@ -12,3 +12,27 @@ using input = phantom<size_t, struct input_tag>;
using output = phantom<size_t, struct output_tag>;
using word = std::vector<input>;
// concattenation of words
template <typename T>
std::vector<T> concat(std::vector<T> const & l, std::vector<T> const & r){
std::vector<T> ret(l.size() + r.size());
auto it = copy(begin(l), end(l), begin(ret));
copy(begin(r), end(r), it);
return ret;
}
// extends all words in seqs by all input symbols. Used to generate *all* strings
inline std::vector<word> all_seqs(input min, input max, std::vector<word> const & seqs){
std::vector<word> ret((max.base() - min.base()) * seqs.size());
auto it = begin(ret);
for(auto const & x : seqs){
for(input i = min; i < max; ++i){
it->resize(x.size() + 1);
auto e = copy(x.begin(), x.end(), it->begin());
*e++ = i;
it++;
}
}
return ret;
}

View file

@ -9,15 +9,6 @@
using namespace std;
template <typename T>
vector<string> create_reverse_map(map<string, T> const & indices){
vector<string> ret(indices.size());
for(auto&& p : indices){
ret[p.second.base()] = p.first;
}
return ret;
}
template <typename T>
vector<T> resize_new(vector<T> const & in, size_t N){
vector<T> ret(N);

View file

@ -9,15 +9,6 @@
using namespace std;
template <typename T>
vector<string> create_reverse_map(map<string, T> const & indices){
vector<string> ret(indices.size());
for(auto&& p : indices){
ret[p.second.base()] = p.first;
}
return ret;
}
template <typename T>
vector<T> resize_new(vector<T> const & in, size_t N){
vector<T> ret(N);

View file

@ -6,51 +6,35 @@
#include <seperating_matrix.hpp>
#include <splitting_tree.hpp>
#include <transfer_sequences.hpp>
#include <partition.hpp>
#include <io.hpp>
#include <future>
#include <numeric>
#include <iomanip>
#include <random>
using namespace std;
template <typename T>
vector<string> create_reverse_map(map<string, T> const & indices){
vector<string> ret(indices.size());
for(auto&& p : indices){
ret[p.second.base()] = p.first;
}
return ret;
}
template <typename T>
std::vector<T> concat(std::vector<T> const & l, std::vector<T> const & r){
std::vector<T> ret(l.size() + r.size());
auto it = copy(begin(l), end(l), begin(ret));
copy(begin(r), end(r), it);
return ret;
}
template <typename T>
std::vector<std::vector<T>> all_seqs(T min, T max, std::vector<std::vector<T>> const & seqs){
std::vector<std::vector<T>> ret((max - min) * seqs.size());
auto it = begin(ret);
for(auto && x : seqs){
for(T i = min; i < max; ++i){
it->assign(x.size()+1);
auto e = copy(x.begin(), x.end(), it->begin());
*e++ = i;
}
}
return ret;
}
using time_logger = silent_timer;
int main(int argc, char *argv[]){
if(argc != 2) return 1;
if(argc != 4) return 1;
const string filename = argv[1];
const bool use_stdio = filename == "--";
// 0 => only states checks. 1 => transition checks. 2 or more => deep checks
const auto k_max = stoul(argv[2]);
const string mode = argv[3];
const bool streaming = mode == "stream";
const bool random_part = streaming;
const bool statistics = mode == "stats";
const bool compress_suite = mode == "compr";
const auto machine = [&]{
timer t("reading file " + filename);
time_logger t("reading file " + filename);
if(use_stdio){
return read_mealy_from_dot(cin);
} else {
@ -60,12 +44,12 @@ int main(int argc, char *argv[]){
auto all_pair_seperating_sequences_fut = async([&]{
const auto splitting_tree_hopcroft = [&]{
timer t("creating hopcroft splitting tree");
time_logger t("creating hopcroft splitting tree");
return create_splitting_tree(machine, hopcroft_style);
}();
const auto all_pair_seperating_sequences = [&]{
timer t("gathering all seperating sequences");
time_logger t("gathering all seperating sequences");
return create_all_pair_seperating_sequences(splitting_tree_hopcroft.root);
}();
@ -74,12 +58,12 @@ int main(int argc, char *argv[]){
auto sequence_fut = async([&]{
const auto splitting_tree = [&]{
timer t("Lee & Yannakakis I");
time_logger t("Lee & Yannakakis I");
return create_splitting_tree(machine, lee_yannakakis_style);
}();
const auto sequence = [&]{
timer t("Lee & Yannakakis II");
time_logger t("Lee & Yannakakis II");
return create_adaptive_distinguishing_sequence(splitting_tree);
}();
@ -87,23 +71,154 @@ int main(int argc, char *argv[]){
});
auto transfer_sequences_fut = std::async([&]{
timer t("determining transfer sequences");
time_logger t("determining transfer sequences");
return create_transfer_sequences(machine, 0);
});
auto inputs_fut = std::async([&]{
return create_reverse_map(machine.input_indices);
});
auto relevant_inputs_fut = std::async([&]{
time_logger t("determining relevance of inputs");
vector<discrete_distribution<input>> distributions(machine.graph_size);
for(state s = 0; s < machine.graph_size; ++s){
vector<double> r_cache(machine.input_size, 0);
for(input i = 0; i < machine.input_size; ++i){
const auto test1 = apply(machine, s, i).output != machine.output_indices.at("quiescence");
const auto test2 = apply(machine, s, i).to != s;
r_cache[i.base()] = test1 + test2;
}
distributions[s.base()] = discrete_distribution<input>(begin(r_cache), end(r_cache));
}
return distributions;
});
const auto all_pair_seperating_sequences = all_pair_seperating_sequences_fut.get();
const auto sequence = sequence_fut.get();
const auto seperating_family = [&]{
timer t("making seperating family");
time_logger t("making seperating family");
return create_seperating_family(sequence, all_pair_seperating_sequences);
}();
const auto transfer_sequences = transfer_sequences_fut.get();
const auto inputs = create_reverse_map(machine.input_indices);
const auto inputs = inputs_fut.get();
{
timer t("making test suite");
const auto print_word = [&](auto w){
for(auto && x : w) cout << inputs[x.base()] << ' ';
};
if(statistics){
const auto adder = [](auto const & x){
return [&x](auto const & l, auto const & r) { return l + x(r); };
};
const auto size = adder([](auto const & r) { return r.size(); });
const auto p_size = transfer_sequences.size();
const auto p_total = accumulate(begin(transfer_sequences), end(transfer_sequences), 0, size);
const auto p_avg = p_total / double(p_size);
cout << "Prefixes:\n";
cout << "\tsize\t" << p_size << '\n';
cout << "\ttotal\t" << p_total << '\n';
cout << "\tavg\t" << p_avg << '\n';
const auto w_fam_size = seperating_family.size();
const auto w_fam_total = accumulate(begin(seperating_family), end(seperating_family), 0, size);
const auto w_fam_avg = w_fam_total / double(w_fam_size);
const auto w_total = accumulate(begin(seperating_family), end(seperating_family), 0, adder([&size](auto const & r){
return accumulate(begin(r), end(r), 0, size);
}));
const auto w_avg = w_total / double(w_fam_total);
cout << "Suffixes:\n";
cout << "\tsize\t" << w_fam_total << '\n';
cout << "\tavg\t" << w_fam_avg << '\n';
cout << "\ttotal\t" << w_total << '\n';
cout << "\tavg\t" << w_avg << '\n';
cout << "Total tests (approximately):\n";
double total = machine.graph_size * 1 * w_fam_avg;
double length = p_avg + 0 + w_avg;
for(size_t k = 0; k <= k_max; ++k){
cout << "\tk = " << k << "\t"
<< setw(16) << size_t(total) << " * "
<< setw(3) << size_t(length) << " = "
<< setw(20) << size_t(total * length) << endl;
total *= machine.input_size;
length += 1;
}
}
if(streaming){
time_logger t("outputting all preset tests");
vector<word> all_sequences(1);
for(int k = 0; k <= k_max; ++k){
cerr << "*** K = " << k << endl;
for(state s = 0; s < machine.graph_size; ++s){
const auto prefix = transfer_sequences[s.base()];
for(auto && suffix : seperating_family[s.base()]){
for(auto && r : all_sequences){
print_word(prefix);
print_word(r);
print_word(suffix);
cout << endl;
}
}
}
all_sequences = all_seqs(0, machine.input_size, all_sequences);
}
}
if(random_part){
time_logger t("outputting all random tests");
std::random_device rd;
std::mt19937 generator(rd());
uniform_int_distribution<size_t> prefix_selection(0, transfer_sequences.size());
uniform_int_distribution<> fair_coin(0, 1);
uniform_int_distribution<size_t> suffix_selection;
auto relevant_inputs = relevant_inputs_fut.get();
using params = uniform_int_distribution<size_t>::param_type;
while(true){
state current_state = 0;
const auto & p = transfer_sequences[prefix_selection(generator)];
current_state = apply(machine, current_state, begin(p), end(p)).to;
vector<input> m;
m.reserve(k_max + 2);
size_t minimal_size = k_max + 1;
while(minimal_size || fair_coin(generator)){
input i = relevant_inputs[current_state.base()](generator);
m.push_back(i);
current_state = apply(machine, current_state, i).to;
if(minimal_size) minimal_size--;
}
const auto & suffixes = seperating_family[current_state.base()];
const auto & s = suffixes[suffix_selection(generator, params{0, suffixes.size()-1})];
print_word(p);
print_word(m);
print_word(s);
cout << endl;
}
}
if(compress_suite){
time_logger t("making test suite");
vector<word> suite;
for(state s = 0; s < machine.graph_size; ++s){
@ -125,11 +240,7 @@ int main(int argc, char *argv[]){
boost::iostreams::filtering_ostream compressed_stream;
compressed_stream.push(boost::iostreams::gzip_compressor());
if(use_stdio){
compressed_stream.push(cout);
} else {
compressed_stream.push(boost::iostreams::file_descriptor_sink(filename + "test_suite"));
}
compressed_stream.push(boost::iostreams::file_descriptor_sink(filename + "test_suite"));
boost::archive::text_oarchive archive(compressed_stream);
archive << real_suite;

56
src/metrics.cpp Normal file
View file

@ -0,0 +1,56 @@
#include <mealy.hpp>
#include <read_mealy_from_dot.hpp>
#include <iostream>
#include <vector>
#include <queue>
using namespace std;
auto create_transfer_sequences(const mealy& machine, const state s, const input ignore){
vector<bool> visited(machine.graph_size, false);
queue<state> work;
work.push(s);
while(!work.empty()){
const auto u = work.front();
work.pop();
if(visited[u.base()]) continue;
visited[u.base()] = true;
for(input i = 0; i < machine.input_size; ++i){
if(i == ignore) continue;
const auto v = apply(machine, u, i).to;
if(visited[v.base()]) continue;
work.push(v);
}
}
return visited;
}
int main(int argc, char *argv[]){
if(argc != 2) return 1;
const string filename = argv[1];
const auto machine = read_mealy_from_dot(filename);
// vector<vector<bool>> table(machine.input_size);
// for(input i = 0; i < machine.input_size; ++i){
// table[i.base()] = create_transfer_sequences(machine, 0, i);
// }
// note the wrong iteration ;D
for(state s = 0; s < machine.graph_size; ++s){
size_t scores[3] = {0, 0, 0};
for(input i = 0; i < machine.input_size; ++i){
const auto test1 = apply(machine, s, i).output != machine.output_indices.at("quiescence");
const auto test2 = apply(machine, s, i).to != s;
scores[test1 + test2]++;
}
cout << scores[2] << " " << scores[1] << " " << scores[0] << endl;
}
}