1
Fork 0
mirror of https://github.com/Jaxan/hybrid-ads.git synced 2025-04-27 23:17:44 +02:00
hybrid-ads/src/main.cpp

264 lines
7.9 KiB
C++

#include <adaptive_distinguishing_sequence.hpp>
#include <logging.hpp>
#include <mealy.hpp>
#include <read_mealy_from_dot.hpp>
#include <seperating_family.hpp>
#include <seperating_matrix.hpp>
#include <splitting_tree.hpp>
#include <transfer_sequences.hpp>
#include <partition.hpp>
#include <io.hpp>
#include <future>
#include <numeric>
#include <iomanip>
#include <random>
using namespace std;
using time_logger = silent_timer;
int main(int argc, char *argv[]){
if(argc != 4) return 1;
const string filename = argv[1];
const bool use_stdio = filename == "--";
// 0 => only states checks. 1 => transition checks. 2 or more => deep checks
const auto k_max = stoul(argv[2]);
const string mode = argv[3];
const bool streaming = mode == "stream";
const bool random_part = streaming;
const bool statistics = mode == "stats";
const bool compress_suite = mode == "compr";
const bool use_relevances = true;
const bool randomize_prefixes = true;
const bool randomize_hopcroft = true;
const bool randomize_lee_yannakakis = true;
const auto machine_and_translation = [&]{
time_logger t("reading file " + filename);
if(use_stdio){
return read_mealy_from_dot(cin);
} else {
return read_mealy_from_dot(filename);
}
}();
const auto & machine = machine_and_translation.first;
const auto & translation = machine_and_translation.second;
auto all_pair_seperating_sequences_fut = async([&]{
const auto splitting_tree_hopcroft = [&]{
time_logger t("creating hopcroft splitting tree");
return create_splitting_tree(machine, randomize_hopcroft ? randomized_hopcroft_style : hopcroft_style);
}();
const auto all_pair_seperating_sequences = [&]{
time_logger t("gathering all seperating sequences");
return create_all_pair_seperating_sequences(splitting_tree_hopcroft.root);
}();
return all_pair_seperating_sequences;
});
auto sequence_fut = async([&]{
const auto splitting_tree = [&]{
time_logger t("Lee & Yannakakis I");
return create_splitting_tree(machine, randomize_lee_yannakakis ? randomized_lee_yannakakis_style : lee_yannakakis_style);
}();
const auto sequence = [&]{
time_logger t("Lee & Yannakakis II");
return create_adaptive_distinguishing_sequence(splitting_tree);
}();
return sequence;
});
auto transfer_sequences_fut = std::async([&]{
time_logger t("determining transfer sequences");
if(randomize_prefixes){
return create_randomized_transfer_sequences(machine, 0);
} else {
return create_transfer_sequences(machine, 0);
}
});
auto inputs_fut = std::async([&]{
return create_reverse_map(translation.input_indices);
});
auto relevant_inputs_fut = std::async([&]{
time_logger t("determining relevance of inputs");
vector<discrete_distribution<input>> distributions(machine.graph_size);
for(state s = 0; s < machine.graph_size; ++s){
vector<double> r_cache(machine.input_size, 1);
if(use_relevances){
for(input i = 0; i < machine.input_size; ++i){
//const auto test1 = apply(machine, s, i).output != machine.output_indices.at("quiescence");
const auto test2 = apply(machine, s, i).to != s;
r_cache[i.base()] = 0.1 + test2;
}
}
distributions[s.base()] = discrete_distribution<input>(begin(r_cache), end(r_cache));
}
return distributions;
});
const auto all_pair_seperating_sequences = all_pair_seperating_sequences_fut.get();
const auto sequence = sequence_fut.get();
const auto seperating_family = [&]{
time_logger t("making seperating family");
return create_seperating_family(sequence, all_pair_seperating_sequences);
}();
const auto transfer_sequences = transfer_sequences_fut.get();
const auto inputs = inputs_fut.get();
const auto print_word = [&](auto w){
for(auto && x : w) cout << inputs[x.base()] << ' ';
};
if(statistics){
const auto adder = [](auto const & x){
return [&x](auto const & l, auto const & r) { return l + x(r); };
};
const auto size = adder([](auto const & r) { return r.size(); });
const auto p_size = transfer_sequences.size();
const auto p_total = accumulate(begin(transfer_sequences), end(transfer_sequences), 0, size);
const auto p_avg = p_total / double(p_size);
cout << "Prefixes:\n";
cout << "\tsize\t" << p_size << '\n';
cout << "\ttotal\t" << p_total << '\n';
cout << "\tavg\t" << p_avg << '\n';
const auto w_fam_size = seperating_family.size();
const auto w_fam_total = accumulate(begin(seperating_family), end(seperating_family), 0, size);
const auto w_fam_avg = w_fam_total / double(w_fam_size);
const auto w_total = accumulate(begin(seperating_family), end(seperating_family), 0, adder([&size](auto const & r){
return accumulate(begin(r), end(r), 0, size);
}));
const auto w_avg = w_total / double(w_fam_total);
cout << "Suffixes:\n";
cout << "\tsize\t" << w_fam_total << '\n';
cout << "\tavg\t" << w_fam_avg << '\n';
cout << "\ttotal\t" << w_total << '\n';
cout << "\tavg\t" << w_avg << '\n';
cout << "Total tests (approximately):\n";
double total = machine.graph_size * 1 * w_fam_avg;
double length = p_avg + 0 + w_avg;
for(size_t k = 0; k <= k_max; ++k){
cout << "\tk = " << k << "\t"
<< setw(16) << size_t(total) << " * "
<< setw(3) << size_t(length) << " = "
<< setw(20) << size_t(total * length) << endl;
total *= machine.input_size;
length += 1;
}
}
if(streaming){
time_logger t("outputting all preset tests");
vector<word> all_sequences(1);
for(int k = 0; k <= k_max; ++k){
cerr << "*** K = " << k << endl;
for(state s = 0; s < machine.graph_size; ++s){
const auto prefix = transfer_sequences[s.base()];
for(auto && suffix : seperating_family[s.base()]){
for(auto && r : all_sequences){
print_word(prefix);
print_word(r);
print_word(suffix);
cout << endl;
}
}
}
all_sequences = all_seqs(0, machine.input_size, all_sequences);
}
}
if(random_part){
time_logger t("outputting all random tests");
cerr << "*** K > " << k_max << endl;
std::random_device rd;
std::mt19937 generator(rd());
uniform_int_distribution<size_t> prefix_selection(0, transfer_sequences.size());
uniform_int_distribution<> unfair_coin(0, 2); // expected flips is p / (p-1)^2, where p is succes probability
uniform_int_distribution<size_t> suffix_selection;
auto relevant_inputs = relevant_inputs_fut.get();
using params = uniform_int_distribution<size_t>::param_type;
while(true){
state current_state = 0;
const auto & p = transfer_sequences[prefix_selection(generator)];
current_state = apply(machine, current_state, begin(p), end(p)).to;
vector<input> m;
m.reserve(k_max + 2);
size_t minimal_size = k_max + 1;
while(minimal_size || unfair_coin(generator)){
input i = relevant_inputs[current_state.base()](generator);
m.push_back(i);
current_state = apply(machine, current_state, i).to;
if(minimal_size) minimal_size--;
}
const auto & suffixes = seperating_family[current_state.base()];
const auto & s = suffixes[suffix_selection(generator, params{0, suffixes.size()-1})];
print_word(p);
print_word(m);
print_word(s);
cout << endl;
}
}
if(compress_suite){
time_logger t("making test suite");
vector<word> suite;
for(state s = 0; s < machine.graph_size; ++s){
const auto prefix = transfer_sequences[s.base()];
for(auto && suffix : seperating_family[s.base()]){
suite.push_back(concat(prefix, suffix));
}
}
vector<vector<string>> real_suite(suite.size());
transform(suite.begin(), suite.end(), real_suite.begin(), [&inputs](auto const & seq){
vector<string> seq2(seq.size());
transform(seq.begin(), seq.end(), seq2.begin(), [&inputs](auto const & i){
return inputs[i.base()];
});
return seq2;
});
boost::iostreams::filtering_ostream compressed_stream;
compressed_stream.push(boost::iostreams::gzip_compressor());
compressed_stream.push(boost::iostreams::file_descriptor_sink(filename + "test_suite"));
boost::archive::text_oarchive archive(compressed_stream);
archive << real_suite;
}
}