1
Fork 0
mirror of https://github.com/Jaxan/hybrid-ads.git synced 2025-06-04 23:57:43 +02:00
hybrid-ads/src/main.cpp
2017-07-25 11:44:28 +01:00

321 lines
9.5 KiB
C++

#include <adaptive_distinguishing_sequence.hpp>
#include <logging.hpp>
#include <mealy.hpp>
#include <reachability.hpp>
#include <read_mealy.hpp>
#include <separating_family.hpp>
#include <splitting_tree.hpp>
#include <test_suite.hpp>
#include <transfer_sequences.hpp>
#include <trie.hpp>
#include <algorithm>
#include <cstdlib>
#include <iostream>
#include <map>
#include <random>
#include <stdexcept>
#include <string>
#include <utility>
/*
* The reason I use getopt, instead of some library (I've used
* docopts and boost in the past), is that I want no dependencies.
* I've installed this software several times, and it was never
* easy because of its dependencies.
*/
#include <unistd.h>
using namespace std;
static const char USAGE[] =
R"(Generate or stream a test suite for a given FSM.
Usage:
main [options]
Options:
-h Show this screen
-v Show version
-m <arg> Operation mode: all, fixed, random
-p <arg> How to generate prefixes: minimal, lexmin, buggy, longest
-s <arg> How to generate suffixes: hsi, hads, none
-k <num> Number of extra states to check for (minus 1)
-r <num> Expected length of random infix word
-x <seed> 32 bits seeds for deterministic execution (0 is not valid)
-f <filename> Input filename ('-' or don't specify for stdin)
-o <filename> Output filename ('-' or don't specify for stdout)
)";
enum Mode { ALL, FIXED, RANDOM };
enum PrefixMode { MIN, LEXMIN, BUGGY, DFS };
enum SuffixMode { HSI, HADS, NOSUFFIX };
struct main_options {
bool help = false;
bool version = false;
Mode mode = ALL;
PrefixMode prefix_mode = MIN;
SuffixMode suffix_mode = HADS;
unsigned long k_max = 3; // 3 means 2 extra states
unsigned long rnd_length = 8; // in addition to k_max
unsigned long seed = 0; // 0 for unset/noise
string input_filename; // empty for stdin
string output_filename; // empty for stdout
};
main_options parse_options(int argc, char ** argv) {
main_options opts;
static const map<string, Mode> mode_names = {
{"all", ALL}, {"fixed", FIXED}, {"random", RANDOM}};
static const map<string, PrefixMode> prefix_names = {
{"minimal", MIN}, {"lexmin", LEXMIN}, {"buggy", BUGGY}, {"longest", DFS}};
static const map<string, SuffixMode> suffix_names = {
{"hsi", HSI}, {"hads", HADS}, {"none", NOSUFFIX}};
try {
int c;
while ((c = getopt(argc, argv, "hvm:p:s:k:r:x:f:o:")) != -1) {
switch (c) {
case 'h': // show help message
opts.help = true;
break;
case 'v': // show version
opts.version = true;
break;
case 'm': // select operation mode
opts.mode = mode_names.at(optarg);
break;
case 'p': // select prefix mode
opts.prefix_mode = prefix_names.at(optarg);
break;
case 's': // select suffix mode
opts.suffix_mode = suffix_names.at(optarg);
break;
case 'k': // select extra states / k-value
opts.k_max = stoul(optarg);
break;
case 'r': // expected random length
opts.rnd_length = stoul(optarg);
break;
case 'x': // seed
opts.seed = stoul(optarg);
break;
case 'f': // input filename
opts.input_filename = optarg;
break;
case 'o': // output filename
opts.output_filename = optarg;
break;
case ':': // some option without argument
throw runtime_error(string("No argument given to option -") + char(optopt));
case '?': // all unrecognised things
throw runtime_error(string("Unrecognised option -") + char(optopt));
}
}
} catch (exception & e) {
cerr << e.what() << endl;
cerr << "Could not parse command line options." << endl;
cerr << "Please use -h to see the available options." << endl;
exit(2);
}
return opts;
}
using time_logger = silent_timer;
int main(int argc, char * argv[]) try {
/*
* First we parse the command line options.
* We quit when asked for help or version
*/
const auto args = parse_options(argc, argv);
if (args.help) {
cout << USAGE << endl;
exit(0);
}
if (args.version) {
cout << "Version 2 (July 2017)" << endl;
exit(0);
}
const bool no_suffix = args.suffix_mode == NOSUFFIX;
const bool use_distinguishing_sequence = args.suffix_mode == HADS;
const bool randomize_hopcroft = true;
const bool randomize_lee_yannakakis = true;
if (args.output_filename != "" && args.output_filename != "-") {
throw runtime_error("File ouput is currently not supported");
}
/*
* Then all the setup is done. Parsing the automaton,
* construction all types of sequences needed for the
* test suite.
*/
const auto machine_and_translation = [&] {
const auto & filename = args.input_filename;
time_logger t_("reading file " + filename);
if (filename == "" || filename == "-") {
return read_mealy_from_dot(cin);
}
if (filename.find(".txt") != string::npos) {
const auto m = read_mealy_from_txt(filename);
const auto t = create_translation_for_mealy(m);
return make_pair(move(m), move(t));
} else if (filename.find(".dot") != string::npos) {
return read_mealy_from_dot(filename);
}
clog << "warning: unrecognized file format, assuming .dot\n";
return read_mealy_from_dot(filename);
}();
const auto & machine = reachable_submachine(move(machine_and_translation.first), 0);
const auto & translation = machine_and_translation.second;
// every thread gets its own seed
const auto random_seeds = [&] {
vector<uint_fast32_t> seeds(4);
if (args.seed != 0) {
seed_seq s{args.seed};
s.generate(seeds.begin(), seeds.end());
} else {
random_device rd;
generate(seeds.begin(), seeds.end(), ref(rd));
}
return seeds;
}();
auto all_pair_separating_sequences = [&] {
if (no_suffix) return splitting_tree(0, 0);
const auto splitting_tree_hopcroft = [&] {
time_logger t("creating hopcroft splitting tree");
return create_splitting_tree(
machine, randomize_hopcroft ? randomized_hopcroft_style : hopcroft_style,
random_seeds[0]);
}();
return splitting_tree_hopcroft.root;
}();
auto sequence = [&] {
if (no_suffix) return adaptive_distinguishing_sequence(0, 0);
const auto tree = [&] {
time_logger t("Lee & Yannakakis I");
if (use_distinguishing_sequence)
return create_splitting_tree(machine,
randomize_lee_yannakakis
? randomized_lee_yannakakis_style
: lee_yannakakis_style,
random_seeds[1]);
else
return result(machine.graph_size);
}();
const auto sequence_ = [&] {
time_logger t("Lee & Yannakakis II");
return create_adaptive_distinguishing_sequence(tree);
}();
return sequence_;
}();
auto transfer_sequences = [&] {
time_logger t("determining transfer sequences");
switch (args.prefix_mode) {
case LEXMIN:
return create_transfer_sequences(canonical_transfer_sequences, machine, 0,
random_seeds[2]);
case MIN:
return create_transfer_sequences(minimal_transfer_sequences, machine, 0,
random_seeds[2]);
case BUGGY:
return create_transfer_sequences(buggy_transfer_sequences, machine, 0, random_seeds[2]);
case DFS:
return create_transfer_sequences(longest_transfer_sequences, machine, 0,
random_seeds[2]);
}
}();
auto const inputs = create_reverse_map(translation.input_indices);
const auto separating_family = [&] {
if (no_suffix) {
separating_set s{{word{}}};
vector<separating_set> suffixes(machine.graph_size, s);
return suffixes;
}
time_logger t("making seperating family");
return create_separating_family(sequence, all_pair_separating_sequences);
}();
/*
* From here on, we will be spamming the output with test cases.
* Depending on the operation mode, this will be either a finite
* or infinite test suite.
*/
const bool fixed_part = args.mode == ALL || args.mode == FIXED;
const bool random_part = args.mode == ALL || args.mode == RANDOM;
// we will remove redundancies using a radix tree/prefix tree/trie
trie<input> test_suite;
word buffer;
const auto output_word = [&inputs](const auto & w) {
for (const auto & x : w) {
cout << inputs[x] << ' ';
}
cout << endl;
};
if (fixed_part) {
// For the exhaustive/preset part we first collect all words
// (while removing redundant ones) before outputting them.
time_logger t("outputting all preset tests");
test(machine, transfer_sequences, separating_family, args.k_max,
{[&buffer](auto const & w) { buffer.insert(buffer.end(), w.begin(), w.end()); },
[&buffer, &test_suite]() {
test_suite.insert(buffer);
buffer.clear();
return true;
}});
test_suite.for_each(output_word);
}
if (random_part) {
// For the random part we immediately output new words, since
// there is no way of collecting an infinite set first...
// Note that this part terminates when the stream is closed.
time_logger t("outputting all random tests");
const auto k_max_ = fixed_part ? args.k_max + 1 : 0;
randomized_test(
machine, transfer_sequences, separating_family, k_max_, args.rnd_length,
{[&buffer](auto const & w) { buffer.insert(buffer.end(), w.begin(), w.end()); },
[&buffer, &test_suite, &output_word]() {
// TODO: probably we want to bound the size of the prefix tree
if (test_suite.insert(buffer)) {
output_word(buffer);
}
buffer.clear();
return bool(cout);
}},
random_seeds[3]);
}
} catch (exception const & e) {
cerr << "Exception thrown: " << e.what() << endl;
return 1;
}