1
Fork 0
mirror of https://github.com/Jaxan/hybrid-ads.git synced 2025-04-27 15:07:45 +02:00
hybrid-ads/lib/splitting_tree.cpp

174 lines
5.3 KiB
C++

#include "splitting_tree.hpp"
#include "partition.hpp"
#include <algorithm>
#include <cassert>
#include <functional>
#include <numeric>
#include <queue>
#include <random>
#include <utility>
using namespace std;
splitting_tree::splitting_tree(size_t N, size_t d) : states(N), depth(d) {
iota(begin(states), end(states), 0);
}
result create_splitting_tree(const mealy & g, options opt, uint_fast32_t random_seed) {
const auto N = g.graph_size;
const auto P = g.input_size;
const auto Q = g.output_size;
result ret(N);
auto & root = ret.root;
auto & succession = ret.successor_cache;
// We'll use a queue to keep track of leaves we have to investigate;
// In some cases we cannot split, and have to wait for other parts of the
// tree. We keep track of how many times we did no work. If this is too
// much, there is no complete splitting tree.
queue<reference_wrapper<splitting_tree>> work;
size_t days_without_progress = 0;
// List of inputs, will be shuffled in case of randomizations
vector<input> all_inputs(P);
iota(begin(all_inputs), end(all_inputs), 0);
mt19937 generator(random_seed);
size_t current_order = 0;
bool split_in_current_order = false;
// Some lambda functions capturing some state, makes the code a bit easier :)
const auto add_push_new_block = [&work](list<list<state>> const & new_blocks, splitting_tree& boom) {
boom.children.assign(new_blocks.size(), splitting_tree(0, boom.depth + 1));
size_t i = 0;
for (auto && b : new_blocks) {
boom.children[i++].states.assign(begin(b), end(b));
}
for (auto && c : boom.children) {
work.push(c);
}
assert(boom.states.size() == accumulate(begin(boom.children), end(boom.children), 0ul,
[](size_t l, const splitting_tree & r) {
return l + r.states.size();
}));
};
const auto is_valid = [N, opt, &g](list<list<state>> const & blocks, input symbol) {
for (auto && block : blocks) {
const auto new_blocks = partition_(begin(block), end(block), [symbol, &g](state state) {
return apply(g, state, symbol).to;
}, N);
for (auto && new_block : new_blocks) {
if (new_block.size() != 1) return false;
}
}
return true;
};
const auto update_succession = [N, &succession](state s, state t, size_t depth) {
if (succession.size() < depth + 1)
succession.resize(depth + 1, vector<state>(N, state(-1)));
succession[depth][s] = t;
};
// We'll start with the root, obviously
work.push(root);
while (!work.empty()) {
splitting_tree & boom = work.front();
work.pop();
const size_t depth = boom.depth;
if (boom.states.size() == 1) continue;
if (opt.randomized) shuffle(begin(all_inputs), end(all_inputs), generator);
if (!opt.assert_minimal_order || current_order == 0) {
// First try to split on output
for (input symbol : all_inputs) {
const auto new_blocks = partition_(
begin(boom.states),
end(boom.states), [symbol, depth, &g, &update_succession](state state) {
const auto r = apply(g, state, symbol);
update_succession(state, r.to, depth);
return r.out;
}, Q);
// no split -> continue with other input symbols
if (new_blocks.size() == 1) continue;
// not a valid split -> continue
if (opt.check_validity && !is_valid(new_blocks, symbol)) continue;
// a succesful split, update partition and add the children
boom.separator = {symbol};
add_push_new_block(new_blocks, boom);
goto has_split;
}
}
if (!opt.assert_minimal_order || current_order > 0) {
// Then try to split on state
for (input symbol : all_inputs) {
vector<bool> successor_states(N, false);
for (auto && state : boom.states) {
successor_states[apply(g, state, symbol).to] = true;
}
const auto & oboom = lca(root, [&successor_states](state state) -> bool {
return successor_states[state];
});
// a leaf, hence not a split -> try other symbols
if (oboom.children.empty()) continue;
// If we want to enforce the right order, we should :D
if (opt.assert_minimal_order && oboom.separator.size() != current_order) continue;
// possibly a succesful split, construct the children
const vector<input> word = concat(vector<input>(1, symbol), oboom.separator);
const auto new_blocks = partition_(
begin(boom.states),
end(boom.states), [word, depth, &g, &update_succession](state state) {
const mealy::edge r = apply(g, state, word.begin(), word.end());
update_succession(state, r.to, depth);
return r.out;
}, Q);
// not a valid split -> continue
if (opt.check_validity && !is_valid(new_blocks, symbol)) continue;
assert(new_blocks.size() > 1);
// update partition and add the children
boom.separator = word;
add_push_new_block(new_blocks, boom);
goto has_split;
}
}
// We tried all we could, but did not succeed => declare incompleteness.
if (days_without_progress++ >= work.size()) {
if (!split_in_current_order || !opt.assert_minimal_order) {
ret.is_complete = false;
return ret;
}
current_order++;
split_in_current_order = false;
}
work.push(boom);
continue;
has_split:
split_in_current_order = true;
days_without_progress = 0;
}
return ret;
}