Browse Source

made array handling better in interpolator

master
Joshua Moerman 13 years ago
parent
commit
8db3e58980
  1. 140
      J/interpolator.h

140
J/interpolator.h

@ -11,10 +11,40 @@
#include <tr1/functional>
// NOTE: there is a specialisation for std::array
// But i'm not glad with how this is done...
namespace J {
namespace interpolator_details {
// some templates to handle arrays...
template <typename Scalar, typename T>
void interpolate(Scalar const & ratio, T & value, T const & begin_value, T const & end_value){
value = (Scalar(1.0) - ratio)*begin_value + ratio*end_value;
}
template <typename Scalar, typename T, size_t N>
void interpolate(Scalar const & ratio, T (& value)[N], T const (& begin_value)[N], T const (& end_value)[N]){
for (unsigned int i = 0; i < N; ++i)
value[i] = (Scalar(1.0) - ratio)*begin_value[i] + ratio*end_value[i];
}
template <typename Scalar, typename T, size_t N>
void interpolate(Scalar const & ratio, std::array<T, N> & value, std::array<T, N> const & begin_value, std::array<T, N> const & end_value){
for (unsigned int i = 0; i < N; ++i)
value[i] = (Scalar(1.0) - ratio)*begin_value[i] + ratio*end_value[i];
}
template <typename T>
struct scalar_of {
// TODO: find out how to make it work for user-types
// maybe require T::Scalar
typedef T type;
};
template <typename T, size_t N>
struct scalar_of<T[N]> {
typedef typename scalar_of<T>::type type;
};
template <typename T, size_t N>
struct scalar_of<std::array<T, N> > {
typedef typename scalar_of<T>::type type;
};
}
namespace interpolators {
struct linear{
@ -49,8 +79,10 @@ namespace interpolators {
template <typename T>
class interpolator {
typedef typename interpolator_details::scalar_of<T>::type Scalar;
typedef std::tr1::function<Scalar (Scalar)> EaseFunction;
std::tr1::function<T (T)> ease_function;
EaseFunction ease_function;
size_t length;
size_t steps;
@ -62,7 +94,7 @@ class interpolator {
public:
template <typename S>
interpolator(S begin_value_, size_t length_ = 100) :
interpolator(S const & begin_value_, size_t length_ = 30) :
ease_function(interpolators::cubic_in_out())
, length(length_)
, steps(length_)
@ -71,7 +103,7 @@ public:
, end_value(begin_value_) {}
template <typename S, typename F>
interpolator(S begin_value_, size_t length_, F ease_function_) :
interpolator(S const & begin_value_, size_t length_, F const & ease_function_) :
ease_function(ease_function_)
, length(length_)
, steps(0)
@ -87,110 +119,42 @@ public:
return value;
}
void set_value(T new_value){
void set_value(T const & new_value){
begin_value = value;
end_value = new_value;
steps = 0;
}
// FIXME: temporary hack
template <size_t N>
void set_value(Scalar const (& new_value)[N]){
begin_value = value;
for(unsigned int i = 0; i < N; ++i)
end_value[i] = new_value[i];
steps = 0;
}
void set_length(size_t new_length){
T ratio = (T) steps / (T) length;
Scalar ratio = (Scalar) steps / (Scalar) length;
length = new_length;
steps = ratio*length;
}
template <typename F>
void set_ease_function(F new_ease_function){
void set_ease_function(F const & new_ease_function){
ease_function = new_ease_function;
}
void interpolate(){
if(steps >= length) return;
++steps;
T ratio = (T) steps / (T) length;
Scalar ratio = (Scalar) steps / (Scalar) length;
ratio = ease_function(ratio);
value = (T(1) - ratio)*begin_value + ratio*end_value;
interpolator_details::interpolate(ratio, value, begin_value, end_value);
}
};
template <typename T, size_t N>
class interpolator<std::array<T, N> > {
std::tr1::function<T (T)> ease_function;
size_t length;
size_t steps;
std::array<T, N> value;
std::array<T, N> begin_value;
std::array<T, N> end_value;
public:
template <typename S>
interpolator(S begin_value_, size_t length_ = 100) :
ease_function(interpolators::cubic_in_out())
, length(length_)
, steps(length_)
, value(begin_value_)
, begin_value(begin_value_)
, end_value(begin_value_) {}
template <typename S, typename F>
interpolator(S const & begin_value_, size_t length_, F const & ease_function_) :
ease_function(ease_function_)
, length(length_)
, steps(0)
, value(begin_value_)
, begin_value(begin_value_)
, end_value(begin_value_) {}
std::array<T, N> const & get_value() const{
return value;
}
operator std::array<T, N> const & () const{
return value;
}
void set_value(std::array<T, N> const & new_value){
begin_value = value;
end_value = new_value;
steps = 0;
}
void set_value(T const (& new_value)[N]){
begin_value = value;
for (unsigned int i = 0; i < N; ++i) {
end_value[i] = new_value[i];
}
steps = 0;
}
void set_length(size_t new_length){
T ratio = (T) steps / (T) length;
length = new_length;
steps = ratio*length;
}
template <typename F>
void set_ease_function(F new_ease_function){
ease_function = new_ease_function;
}
void interpolate(){
if(steps >= length) return;
++steps;
T ratio = (T) steps / (T) length;
ratio = ease_function(ratio);
for (unsigned int i = 0; i < N; ++i) {
value[i] = (T(1) - ratio)*begin_value[i] + ratio*end_value[i];
}
}
};
} // namespace J
#endif