mirror of
https://git.cs.ou.nl/joshua.moerman/mealy-decompose.git
synced 2025-04-29 17:57:44 +02:00
reorganised python script, slightly more efficient now
This commit is contained in:
parent
a067d158f4
commit
2bd081ba37
1 changed files with 256 additions and 231 deletions
|
@ -11,22 +11,44 @@ import argparse
|
|||
# Stap 1: pip3 install python-sat
|
||||
# Stap 2: python3 decompose_fsm.py -h
|
||||
|
||||
timeout = False
|
||||
timeout_seconds = 3*60
|
||||
record_sizes = False
|
||||
record_file = './results/log.txt'
|
||||
keep_log = True
|
||||
|
||||
parser = argparse.ArgumentParser(description="Decomposes a FSM into smaller components by remapping its outputs. Uses a SAT solver.")
|
||||
parser.add_argument('-c', '--components', type=int, default=2, help='number of components')
|
||||
parser.add_argument('-w', '--weak', default=False, action="store_true", help='look for weak decomposition')
|
||||
parser.add_argument('--add-state-trans', default=False, action="store_true", help='adds state transitivity constraints')
|
||||
parser.add_argument('-v', '--verbose', default=False, action="store_true", help='prints more info')
|
||||
parser.add_argument('filename', help='path to .dot file')
|
||||
args = parser.parse_args()
|
||||
def main():
|
||||
record_file = './results/log.txt' if keep_log else None
|
||||
|
||||
# Aantal componenten. c = 1 is zinloos, maar zou moeten werken
|
||||
c = args.components
|
||||
assert c >= 1
|
||||
parser = argparse.ArgumentParser(description="Decomposes a FSM into smaller components by remapping its outputs. Uses a SAT solver.")
|
||||
parser.add_argument('-c', '--components', type=int, default=2, help='number of components')
|
||||
parser.add_argument('-w', '--weak', default=False, action="store_true", help='look for weak decomposition')
|
||||
parser.add_argument('--add-state-trans', default=False, action="store_true", help='adds state transitivity constraints')
|
||||
parser.add_argument('-v', '--verbose', default=False, action="store_true", help='prints more info')
|
||||
parser.add_argument('-t', '--timeout', type=int, default=None, help='timeout (in seconds)')
|
||||
parser.add_argument('filename', help='path to .dot file')
|
||||
args = parser.parse_args()
|
||||
|
||||
# Aantal componenten. c = 1 is zinloos, maar zou moeten werken
|
||||
c = args.components
|
||||
assert c >= 1
|
||||
|
||||
with open(args.filename) as file:
|
||||
machine = parse_dot_file(file)
|
||||
if args.verbose:
|
||||
print(machine)
|
||||
|
||||
print(f'Input FSM: {len(machine.states)} states, {len(machine.inputs)} inputs, and {len(machine.outputs)} outputs')
|
||||
|
||||
if args.timeout != None:
|
||||
def timeout_handler(signum, frame):
|
||||
with open(record_file, 'a') as file:
|
||||
last_two_comps = '/'.join(args.filename.split('/')[-2:])
|
||||
file.write(f'{last_two_comps}\t{len(machine.states)}\t{len(machine.inputs)}\t{len(machine.outputs)}\t{args.weak}\t{c}\tTIMEOUT\n')
|
||||
print('TIMEOUT')
|
||||
exit()
|
||||
|
||||
signal.signal(signal.SIGALRM, timeout_handler)
|
||||
signal.alarm(args.timeout)
|
||||
|
||||
encoder = Encoder(machine, args, record_file=record_file)
|
||||
encoder.solve()
|
||||
|
||||
|
||||
###################################
|
||||
|
@ -86,28 +108,9 @@ def parse_dot_file(lines):
|
|||
|
||||
return FSM(initial_state, states, inputs, outputs, transition_map, output_map)
|
||||
|
||||
with open(args.filename) as file:
|
||||
machine = parse_dot_file(file)
|
||||
if args.verbose:
|
||||
print(machine)
|
||||
|
||||
N = len(machine.states)
|
||||
print(f'Input FSM: {N} states, {len(machine.inputs)} inputs, and {len(machine.outputs)} outputs')
|
||||
|
||||
if timeout:
|
||||
def timeout_handler(signum, frame):
|
||||
with open(record_file, 'a') as file:
|
||||
last_two_comps = '/'.join(args.filename.split('/')[-2:])
|
||||
file.write(f'{last_two_comps}\t{N}\t{len(machine.inputs)}\t{len(machine.outputs)}\t{args.weak}\t{c}\tTIMEOUT\n')
|
||||
print('TIMEOUT')
|
||||
exit()
|
||||
|
||||
signal.signal(signal.SIGALRM, timeout_handler)
|
||||
signal.alarm(timeout_seconds)
|
||||
|
||||
###################################
|
||||
# Utility functions
|
||||
|
||||
def print_table(cell, rs, cs):
|
||||
first_col_size = max([len(str(r)) for r in rs])
|
||||
col_size = 1 + max([len(str(c)) for c in cs] + [len(cell(r, c)) for c in cs for r in rs])
|
||||
|
@ -126,6 +129,7 @@ def print_table(cell, rs, cs):
|
|||
def print_eqrel(rel, xs):
|
||||
print_table(lambda r, c: 'Y' if rel(r, c) else '·', xs, xs)
|
||||
|
||||
|
||||
class Progress:
|
||||
def __init__(self, name, guess):
|
||||
self.reset(name, guess, show=False)
|
||||
|
@ -148,228 +152,249 @@ class Progress:
|
|||
print(f'{self.percentage}%', end='', flush=True)
|
||||
print('\r', end='')
|
||||
|
||||
progress = Progress('', 1)
|
||||
|
||||
########################
|
||||
# Encodering naar logica
|
||||
print('Start encoding')
|
||||
os = list(machine.outputs) # outputs
|
||||
rids = [i for i in range(c)] # components
|
||||
vpool = IDPool()
|
||||
cnf = CNF()
|
||||
###################################
|
||||
# Main logic
|
||||
class Encoder:
|
||||
def __init__(self, machine, args, record_file=None, progress=None):
|
||||
self.machine = machine
|
||||
self.args = args
|
||||
self.record_file = record_file
|
||||
self.progress = progress if progress else Progress('', 1)
|
||||
|
||||
# Een hulp variabele voor False en True, maakt de andere variabelen eenvoudiger
|
||||
def var_const(b):
|
||||
return(vpool.id(('const', b)))
|
||||
self.c = self.args.components
|
||||
self.N = len(self.machine.states)
|
||||
self.os = list(machine.outputs) # outputs
|
||||
self.rids = [i for i in range(self.c)] # components
|
||||
self.vpool = IDPool()
|
||||
self.solver = Solver()
|
||||
|
||||
cnf.append([var_const(True)])
|
||||
cnf.append([-var_const(False)])
|
||||
self.encode()
|
||||
|
||||
# Voor elke relatie en elke twee elementen o1 en o2, is er een variabele die
|
||||
# aangeeft of o1 en o2 gerelateerd zijn. Er is 1 variabele voor xRy en yRx, dus
|
||||
# symmetrie is al ingebouwd. Reflexiviteit is ook ingebouwd.
|
||||
def var_rel(rid, o1, o2):
|
||||
if o1 == o2:
|
||||
return var_const(True)
|
||||
def add_clause(self, cls, no_return=True):
|
||||
self.solver.add_clause(cls, no_return)
|
||||
|
||||
[so1, so2] = sorted([o1, o2])
|
||||
return(vpool.id(('rel', rid, so1, so2)))
|
||||
def add_clauses(self, clss, no_return=True):
|
||||
self.solver.append_formula(clss, no_return)
|
||||
|
||||
# De relatie op outputs geeft een relaties op states. Deze relatie moet ook een
|
||||
# bisimulatie zijn.
|
||||
def var_state_rel(rid, s1, s2):
|
||||
if s1 == s2:
|
||||
return var_const(True)
|
||||
# Een hulp variabele voor False en True, maakt de andere variabelen eenvoudiger
|
||||
def var_const(self, b):
|
||||
return(self.vpool.id(('const', b)))
|
||||
|
||||
[ss1, ss2] = sorted([s1, s2])
|
||||
return(vpool.id(('state_rel', rid, ss1, ss2)))
|
||||
# Voor elke relatie en elke twee elementen o1 en o2, is er een variabele die
|
||||
# aangeeft of o1 en o2 gerelateerd zijn. Er is 1 variabele voor xRy en yRx, dus
|
||||
# symmetrie is al ingebouwd. Reflexiviteit is ook ingebouwd.
|
||||
def var_rel(self, rid, o1, o2):
|
||||
if o1 == o2:
|
||||
return self.var_const(True)
|
||||
|
||||
# Voor elke relatie, en elke equivalentie-klasse, kiezen we precies 1 state
|
||||
# als representant. Deze variabele geeft aan welk element.
|
||||
def var_state_rep(rid, s):
|
||||
return(vpool.id(('state_rep', rid, s)))
|
||||
[so1, so2] = sorted([o1, o2])
|
||||
return self.vpool.id(('rel', rid, so1, so2))
|
||||
|
||||
# Contraints zodat de relatie een equivalentie relatie is. We hoeven alleen
|
||||
# maar transitiviteit te encoderen, want refl en symm zijn ingebouwd in de var.
|
||||
progress.reset('transitivity (o)', guess=len(rids) * len(os) ** 3)
|
||||
for rid in rids:
|
||||
for xo in os:
|
||||
for yo in os:
|
||||
for zo in os:
|
||||
# als xo R yo en yo R zo dan xo R zo
|
||||
cnf.append([-var_rel(rid, xo, yo), -var_rel(rid, yo, zo), var_rel(rid, xo, zo)])
|
||||
progress.add()
|
||||
# De relatie op outputs geeft een relaties op states. Deze relatie moet ook een
|
||||
# bisimulatie zijn.
|
||||
def var_state_rel(self, rid, s1, s2):
|
||||
if s1 == s2:
|
||||
return self.var_const(True)
|
||||
|
||||
if args.add_state_trans:
|
||||
progress.reset('transitivity (s)', guess=len(rids) * len(machine.states) ** 3)
|
||||
for rid in rids:
|
||||
for sx in machine.states:
|
||||
for sy in machine.states:
|
||||
for sz in machine.states:
|
||||
# als sx R sy en sy R sz dan sx R sz
|
||||
cnf.append([-var_state_rel(rid, sx, sy), -var_state_rel(rid, sy, sz), var_state_rel(rid, sx, sz)])
|
||||
progress.add()
|
||||
[ss1, ss2] = sorted([s1, s2])
|
||||
return self.vpool.id(('state_rel', rid, ss1, ss2))
|
||||
|
||||
# Constraint zodat de relaties samen alle elementen kunnen onderscheiden.
|
||||
# (Aka: the bijbehorende quotienten zijn joint-injective.)
|
||||
progress.reset('injectivity', guess=len(os) * (len(os) - 1) / 2)
|
||||
for xi, xo in enumerate(os):
|
||||
for yo in os[xi+1:]:
|
||||
# Tenminste een rid moet een verschil maken
|
||||
cnf.append([-var_rel(rid, xo, yo) for rid in rids])
|
||||
progress.add()
|
||||
# Voor elke relatie, en elke equivalentie-klasse, kiezen we precies 1 state
|
||||
# als representant. Deze variabele geeft aan welk element.
|
||||
def var_state_rep(self, rid, s):
|
||||
return self.vpool.id(('state_rep', rid, s))
|
||||
|
||||
# sx ~ sy => for each input: (1) outputs equivalent AND (2) successors related
|
||||
# Momenteel hebben we niet de inverse implicatie, is misschien ook niet nodig?
|
||||
progress.reset('bisimulation modulo rel', guess=len(rids) * len(machine.states) * len(machine.states) * len(machine.inputs))
|
||||
for rid in rids:
|
||||
for sx in machine.states:
|
||||
for sy in machine.states:
|
||||
for i in machine.inputs:
|
||||
# sx ~ sy => output(sx, i) ~ output(sy, i)
|
||||
ox = machine.output(sx, i)
|
||||
oy = machine.output(sy, i)
|
||||
cnf.append([-var_state_rel(rid, sx, sy), var_rel(rid, ox, oy)])
|
||||
def encode(self):
|
||||
print('===============')
|
||||
print('Start encoding')
|
||||
self.add_clause([self.var_const(True)])
|
||||
self.add_clause([-self.var_const(False)])
|
||||
|
||||
# sx ~ sy => delta(sx, i) ~ delta(sy, i)
|
||||
tx = machine.transition(sx, i)
|
||||
ty = machine.transition(sy, i)
|
||||
cnf.append([-var_state_rel(rid, sx, sy), var_state_rel(rid, tx, ty)])
|
||||
# Contraints zodat de relatie een equivalentie relatie is. We hoeven alleen
|
||||
# maar transitiviteit te encoderen, want refl en symm zijn ingebouwd in de var.
|
||||
self.progress.reset('transitivity (o)', guess=len(self.rids) * len(self.os) ** 3)
|
||||
for rid in self.rids:
|
||||
for xo in self.os:
|
||||
for yo in self.os:
|
||||
for zo in self.os:
|
||||
# als xo R yo en yo R zo dan xo R zo
|
||||
self.add_clause([-self.var_rel(rid, xo, yo), -self.var_rel(rid, yo, zo), self.var_rel(rid, xo, zo)])
|
||||
self.progress.add()
|
||||
|
||||
progress.add()
|
||||
if self.args.add_state_trans:
|
||||
self.progress.reset('transitivity (s)', guess=len(self.rids) * len(self.machine.states) ** 3)
|
||||
for rid in self.rids:
|
||||
for sx in self.machine.states:
|
||||
for sy in self.machine.states:
|
||||
for sz in self.machine.states:
|
||||
# als sx R sy en sy R sz dan sx R sz
|
||||
self.add_clause([-self.var_state_rel(rid, sx, sy), -self.var_state_rel(rid, sy, sz), self.var_state_rel(rid, sx, sz)])
|
||||
self.progress.add()
|
||||
|
||||
# De constraints die zorgen dat representanten ook echt representanten zijn.
|
||||
states = list(machine.states)
|
||||
progress.reset('representatives', guess=len(rids) * len(states))
|
||||
for rid in rids:
|
||||
for ix, sx in enumerate(states):
|
||||
# Belangrijkste: een element is een representant, of equivalent met een
|
||||
# eerder element. We forceren hiermee dat de solver representanten moet
|
||||
# kiezen (voor aan de lijst).
|
||||
cnf.append([var_state_rep(rid, sx)] + [var_state_rel(rid, sx, sy) for sy in states[:ix]] )
|
||||
# Constraint zodat de relaties samen alle elementen kunnen onderscheiden.
|
||||
# (Aka: the bijbehorende quotienten zijn joint-injective.)
|
||||
self.progress.reset('injectivity', guess=len(self.os) * (len(self.os) - 1) / 2)
|
||||
for xi, xo in enumerate(self.os):
|
||||
for yo in self.os[xi+1:]:
|
||||
# Tenminste een rid moet een verschil maken
|
||||
self.add_clause([-self.var_rel(rid, xo, yo) for rid in self.rids])
|
||||
self.progress.add()
|
||||
|
||||
for sy in states[:ix]:
|
||||
# rx en ry kunnen niet beide een representant zijn, tenzij ze
|
||||
# niet gerelateerd zijn.
|
||||
cnf.append([-var_state_rep(rid, sx), -var_state_rep(rid, sy), -var_state_rel(rid, sx, sy)])
|
||||
# sx ~ sy => for each input: (1) outputs equivalent AND (2) successors related
|
||||
# Momenteel hebben we niet de inverse implicatie, is misschien ook niet nodig?
|
||||
self.progress.reset('bisimulation modulo rel', guess=len(self.rids) * len(self.machine.states) * len(self.machine.states) * len(self.machine.inputs))
|
||||
for rid in self.rids:
|
||||
for sx in self.machine.states:
|
||||
for sy in self.machine.states:
|
||||
for i in self.machine.inputs:
|
||||
# sx ~ sy => output(sx, i) ~ output(sy, i)
|
||||
ox = self.machine.output(sx, i)
|
||||
oy = self.machine.output(sy, i)
|
||||
self.add_clause([-self.var_state_rel(rid, sx, sy), self.var_rel(rid, ox, oy)])
|
||||
|
||||
progress.add()
|
||||
# sx ~ sy => delta(sx, i) ~ delta(sy, i)
|
||||
tx = self.machine.transition(sx, i)
|
||||
ty = self.machine.transition(sy, i)
|
||||
self.add_clause([-self.var_state_rel(rid, sx, sy), self.var_state_rel(rid, tx, ty)])
|
||||
|
||||
# Tot slot willen we weinig representanten. Dit doen we met een "atmost"
|
||||
# formule. We gaan een binaire zoek doen met incremental sat solving.
|
||||
rhs = None
|
||||
if args.weak:
|
||||
lower_bound = int(math.floor((N-1)**(1/c)))
|
||||
upper_bound = int(N)
|
||||
print(f'weak size constraints {lower_bound} {upper_bound}')
|
||||
rhs = []
|
||||
for rid in rids:
|
||||
with ITotalizer([var_state_rep(rid, sx) for sx in machine.states], ubound=upper_bound, top_id=vpool.top) as cnf_optim:
|
||||
vpool.occupy(vpool.top + 1, cnf_optim.top_id)
|
||||
vpool.top = cnf_optim.top_id
|
||||
cnf.extend(cnf_optim.cnf.clauses)
|
||||
rhs.append(cnf_optim.rhs)
|
||||
else:
|
||||
lower_bound = int(math.floor(c * (N-1)**(1/c)))
|
||||
upper_bound = int(N + c - 1)
|
||||
print(f'size constraints {lower_bound} {upper_bound}')
|
||||
with ITotalizer([var_state_rep(rid, sx) for rid in rids for sx in machine.states], ubound=upper_bound, top_id=vpool.top) as cnf_optim:
|
||||
cnf.extend(cnf_optim.cnf.clauses)
|
||||
rhs = cnf_optim.rhs
|
||||
self.progress.add()
|
||||
|
||||
##################################
|
||||
# Probleem oplossen met solver :-)
|
||||
print('Start solving')
|
||||
print('- copying formula')
|
||||
with Solver(bootstrap_with=cnf) as solver:
|
||||
print('===============')
|
||||
sat = None
|
||||
while upper_bound - lower_bound >= 2:
|
||||
mid_size = int((lower_bound + upper_bound) / 2)
|
||||
print(f'Trying {lower_bound} < {mid_size} < {upper_bound}', end='', flush=True)
|
||||
if args.weak:
|
||||
assumptions = [-rhs[rid][mid_size] for rid in rids]
|
||||
sat = solver.solve(assumptions=assumptions)
|
||||
# De constraints die zorgen dat representanten ook echt representanten zijn.
|
||||
states = list(self.machine.states)
|
||||
self.progress.reset('representatives', guess=len(self.rids) * len(states))
|
||||
for rid in self.rids:
|
||||
for ix, sx in enumerate(states):
|
||||
# Belangrijkste: een element is een representant, of equivalent met een
|
||||
# eerder element. We forceren hiermee dat de solver representanten moet
|
||||
# kiezen (voor aan de lijst).
|
||||
self.add_clause([self.var_state_rep(rid, sx)] + [self.var_state_rel(rid, sx, sy) for sy in states[:ix]] )
|
||||
|
||||
for sy in states[:ix]:
|
||||
# rx en ry kunnen niet beide een representant zijn, tenzij ze
|
||||
# niet gerelateerd zijn.
|
||||
self.add_clause([-self.var_state_rep(rid, sx), -self.var_state_rep(rid, sy), -self.var_state_rel(rid, sx, sy)])
|
||||
|
||||
self.progress.add()
|
||||
|
||||
# Tot slot willen we weinig representanten. Dit doen we met een "atmost"
|
||||
# formule. We gaan een binaire zoek doen met incremental sat solving.
|
||||
self.rhs = None
|
||||
if self.args.weak:
|
||||
self.lower_bound = int(math.floor((self.N-1)**(1/self.c)))
|
||||
self.upper_bound = int(self.N)
|
||||
print(f'weak size constraints {self.lower_bound} {self.upper_bound}')
|
||||
self.rhs = []
|
||||
for rid in self.rids:
|
||||
with ITotalizer([self.var_state_rep(rid, sx) for sx in self.machine.states], ubound=self.upper_bound, top_id=self.vpool.top) as cnf_optim:
|
||||
self.vpool.occupy(self.vpool.top + 1, cnf_optim.top_id)
|
||||
self.vpool.top = cnf_optim.top_id
|
||||
self.add_clauses(cnf_optim.cnf.clauses)
|
||||
self.rhs.append(cnf_optim.rhs)
|
||||
else:
|
||||
sat = solver.solve(assumptions=[-rhs[mid_size]])
|
||||
if sat:
|
||||
print('\tdown')
|
||||
upper_bound = mid_size
|
||||
continue
|
||||
else:
|
||||
print('\tup')
|
||||
lower_bound = mid_size
|
||||
continue
|
||||
self.lower_bound = int(math.floor(self.c * (self.N-1)**(1/self.c)))
|
||||
self.upper_bound = int(self.N + self.c - 1)
|
||||
print(f'size constraints {self.lower_bound} {self.upper_bound}')
|
||||
with ITotalizer([self.var_state_rep(rid, sx) for rid in self.rids for sx in self.machine.states], ubound=self.upper_bound, top_id=self.vpool.top) as cnf_optim:
|
||||
self.add_clauses(cnf_optim.cnf.clauses)
|
||||
self.rhs = cnf_optim.rhs
|
||||
|
||||
bound = upper_bound
|
||||
print(f'done searching, found bound = {bound}')
|
||||
|
||||
if args.weak:
|
||||
assumptions = [-rhs[rid][bound] for rid in rids]
|
||||
sat = solver.solve(assumptions=assumptions)
|
||||
else:
|
||||
sat = solver.solve(assumptions=[-rhs[bound]])
|
||||
assert sat
|
||||
|
||||
# Even omzetten in een makkelijkere data structuur
|
||||
m = solver.get_model()
|
||||
model = {}
|
||||
for l in m:
|
||||
if l < 0: model[-l] = False
|
||||
else: model[l] = True
|
||||
|
||||
if args.verbose:
|
||||
for rid in rids:
|
||||
print(f'Relation {rid}:')
|
||||
print_eqrel(lambda x, y: model[var_rel(rid, x, y)], os)
|
||||
|
||||
for rid in rids:
|
||||
print(f'State relation {rid}:')
|
||||
print_eqrel(lambda x, y: model[var_state_rel(rid, x, y)], machine.states)
|
||||
|
||||
# Precieze groottes van elk component tellen
|
||||
counts = []
|
||||
for rid in rids:
|
||||
count = 0
|
||||
# Eerst verzamelen we de representanten
|
||||
for s in machine.states:
|
||||
if model[var_state_rep(rid, s)]:
|
||||
count += 1
|
||||
if args.verbose:
|
||||
print(f'comp {rid} -> representative state {s}')
|
||||
counts.append(count)
|
||||
|
||||
print(f'Reduced sizes = {counts} = {sum(counts)}')
|
||||
if record_sizes:
|
||||
with open(record_file, 'a') as file:
|
||||
last_two_comps = '/'.join(args.filename.split('/')[-2:])
|
||||
file.write(f'{last_two_comps}\t{N}\t{len(machine.inputs)}\t{len(machine.outputs)}\t{args.weak}\t{c}\t{sum(counts)}\t{sorted(counts, reverse=True)}\n')
|
||||
|
||||
projections = {}
|
||||
for rid in rids:
|
||||
local_outputs = machine.outputs.copy()
|
||||
projections[rid] = {}
|
||||
count = 0
|
||||
|
||||
while local_outputs:
|
||||
repr = local_outputs.pop()
|
||||
if repr in projections[rid]:
|
||||
def solve(self):
|
||||
print('===============')
|
||||
print('Start solving')
|
||||
sat = None
|
||||
while self.upper_bound - self.lower_bound >= 2:
|
||||
self.mid_size = int((self.lower_bound + self.upper_bound) / 2)
|
||||
print(f'Trying {self.lower_bound} < {self.mid_size} < {self.upper_bound}', end='', flush=True)
|
||||
if self.args.weak:
|
||||
assumptions = [-self.rhs[rid][self.mid_size] for rid in self.rids]
|
||||
sat = self.solver.solve(assumptions=assumptions)
|
||||
else:
|
||||
sat = self.solver.solve(assumptions=[-self.rhs[self.mid_size]])
|
||||
if sat:
|
||||
print('\tdown')
|
||||
self.upper_bound = self.mid_size
|
||||
continue
|
||||
else:
|
||||
print('\tup')
|
||||
self.lower_bound = self.mid_size
|
||||
continue
|
||||
|
||||
projections[rid][repr] = f'cls_{rid}_{count}'
|
||||
others = False
|
||||
self.bound = self.upper_bound
|
||||
print(f'done searching, found bound = {self.bound}')
|
||||
|
||||
for o in local_outputs:
|
||||
if model[var_rel(rid, o, repr)]:
|
||||
others = True
|
||||
projections[rid][o] = f'cls_{rid}_{count}'
|
||||
if self.args.weak:
|
||||
assumptions = [-self.rhs[rid][self.bound] for rid in self.rids]
|
||||
sat = self.solver.solve(assumptions=assumptions)
|
||||
else:
|
||||
sat = self.solver.solve(assumptions=[-self.rhs[self.bound]])
|
||||
assert sat
|
||||
|
||||
if not others:
|
||||
# Aangeven dat het een unieke output is
|
||||
projections[rid][repr] = f'cls_{rid}_{count}_u'
|
||||
# Even omzetten in een makkelijkere data structuur
|
||||
m = self.solver.get_model()
|
||||
model = {}
|
||||
for l in m:
|
||||
if l < 0: model[-l] = False
|
||||
else: model[l] = True
|
||||
|
||||
count += 1
|
||||
if self.args.verbose:
|
||||
for rid in self.rids:
|
||||
print(f'Relation {rid}:')
|
||||
print_eqrel(lambda x, y: model[self.var_rel(rid, x, y)], self.os)
|
||||
|
||||
print('===============')
|
||||
print('Output mapping:')
|
||||
print_table(lambda o, rid: projections[rid][o], machine.outputs, rids)
|
||||
for rid in self.rids:
|
||||
print(f'State relation {rid}:')
|
||||
print_eqrel(lambda x, y: model[self.var_state_rel(rid, x, y)], self.machine.states)
|
||||
|
||||
# Precieze groottes van elk component tellen
|
||||
counts = []
|
||||
for rid in self.rids:
|
||||
count = 0
|
||||
# Eerst verzamelen we de representanten
|
||||
for s in self.machine.states:
|
||||
if model[self.var_state_rep(rid, s)]:
|
||||
count += 1
|
||||
if self.args.verbose:
|
||||
print(f'comp {rid} -> representative state {s}')
|
||||
counts.append(count)
|
||||
|
||||
print(f'Reduced sizes = {counts} = {sum(counts)}')
|
||||
if self.record_file != None:
|
||||
with open(self.record_file, 'a') as file:
|
||||
last_two_comps = '/'.join(self.args.filename.split('/')[-2:])
|
||||
file.write(f'{last_two_comps}\t{self.N}\t{len(self.machine.inputs)}\t{len(self.machine.outputs)}\t{self.args.weak}\t{self.c}\t{sum(counts)}\t{sorted(counts, reverse=True)}\n')
|
||||
|
||||
projections = {}
|
||||
for rid in self.rids:
|
||||
local_outputs = self.machine.outputs.copy()
|
||||
projections[rid] = {}
|
||||
count = 0
|
||||
|
||||
while local_outputs:
|
||||
repr = local_outputs.pop()
|
||||
if repr in projections[rid]:
|
||||
continue
|
||||
|
||||
projections[rid][repr] = f'cls_{rid}_{count}'
|
||||
others = False
|
||||
|
||||
for o in local_outputs:
|
||||
if model[self.var_rel(rid, o, repr)]:
|
||||
others = True
|
||||
projections[rid][o] = f'cls_{rid}_{count}'
|
||||
|
||||
if not others:
|
||||
# Aangeven dat het een unieke output is
|
||||
projections[rid][repr] = f'cls_{rid}_{count}_u'
|
||||
|
||||
count += 1
|
||||
|
||||
print('===============')
|
||||
print('Output mapping:')
|
||||
print_table(lambda o, rid: projections[rid][o], self.machine.outputs, self.rids)
|
||||
|
||||
|
||||
###################################
|
||||
# Run script
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
|
Loading…
Add table
Reference in a new issue