mirror of
https://git.cs.ou.nl/joshua.moerman/mealy-decompose.git
synced 2025-04-30 02:07:44 +02:00
bugfix in decompose_mealy.py and it actually works now
This commit is contained in:
parent
f5072a9b40
commit
f7b3d27478
2 changed files with 71 additions and 33 deletions
|
@ -5,11 +5,16 @@ from pysat.formula import CNF
|
|||
|
||||
### Gebruik:
|
||||
# Stap 1: pip3 install python-sat
|
||||
# Stap 2: python3 decomp-sat.py
|
||||
# Stap 2: python3 decompose_mealy.py
|
||||
|
||||
|
||||
###################################
|
||||
# Wat dingetjes over Mealy machines
|
||||
|
||||
# Voorbeeld: 2n states, input-alfabet 'a' en 'b', outputs [0...n-1]
|
||||
def rick_koenders_machine(N):
|
||||
transition_fun = {((n, False), 'a') : ((n+1) % 3, False) for n in range(N)}
|
||||
transition_fun |= {(((n+1) % 3, True), 'a') : (n % 3, True) for n in range(N)}
|
||||
transition_fun = {((n, False), 'a') : ((n+1) % N, False) for n in range(N)}
|
||||
transition_fun |= {(((n+1) % N, True), 'a') : (n % N, True) for n in range(N)}
|
||||
transition_fun |= {((n, b), 'b') : (n, not b) for b in [False, True] for n in range(N)}
|
||||
output_fun = {((n, b), 'a') : n for b in [False, True] for n in range(N)}
|
||||
output_fun |= {((n, b), 'b') : 0 for b in [False, True] for n in range(N)}
|
||||
|
@ -29,23 +34,45 @@ def mealy_sem_q(machine, word, state):
|
|||
def mealy_sem(machine, word):
|
||||
return mealy_sem_q(machine, word, machine['initial_state'])
|
||||
|
||||
def print_table(cell, rs, cs):
|
||||
first_col_size = max([len(str(r)) for r in rs])
|
||||
col_size = 1 + max([len(str(c)) for c in cs])
|
||||
|
||||
print(''.rjust(first_col_size), end='')
|
||||
for c in cs:
|
||||
print(str(c).rjust(col_size), end='')
|
||||
print('')
|
||||
|
||||
for r in rs:
|
||||
print(str(r).rjust(first_col_size), end='')
|
||||
for c in cs:
|
||||
print(cell(r, c).rjust(col_size), end='')
|
||||
print('')
|
||||
|
||||
|
||||
################
|
||||
# Voorbeeld data
|
||||
machine = rick_koenders_machine(3)
|
||||
machine = rick_koenders_machine(4) # 8 states
|
||||
|
||||
# L* table
|
||||
rows = ['', 'a', 'aa', 'b', 'ab', 'aab', 'abaa', 'aabab']
|
||||
cols = ['a', 'aa', 'aaa', 'b', 'ab', 'ba']
|
||||
# L* table: Niet noodzakelijk volledig, werkt ook met minder data, maar ik
|
||||
# weet niet wat voor garanties we dan kunnen geven. Het is sowieso maar de
|
||||
# vraag of de kolommen voldoende zijn als we projecteren.
|
||||
rows = ['', 'a', 'aa', 'aaa', 'aaaa', 'b', 'ab', 'aab', 'aaab']
|
||||
cols = ['a', 'aa', 'aaa', 'aaaa', 'b', 'ab', 'ba', 'abab']
|
||||
|
||||
# We zoeken 2 componenten, grootte 5 (is minder dan 6)
|
||||
print_table(lambda r, c: str(mealy_sem(machine, r+c)), rows, cols)
|
||||
|
||||
# We zoeken 2 componenten met gezamelijke grootte 6 (minder dan 8)
|
||||
# als de de total_size te laag is => UNSAT => duurt lang
|
||||
c = 2
|
||||
total_size = 5 # als deze te laag is => UNSAT => duurt lang
|
||||
total_size = 6
|
||||
|
||||
|
||||
########################
|
||||
# Encodering naar logica
|
||||
print('Start encoding')
|
||||
os = machine['outputs'] # outputs
|
||||
rids = [i for i in range(c)] # components
|
||||
|
||||
|
||||
print('Start encoding')
|
||||
vpool = IDPool()
|
||||
cnf = CNF()
|
||||
|
||||
|
@ -97,7 +124,7 @@ for rid in rids:
|
|||
for ry in rows:
|
||||
for rz in rows:
|
||||
# als rx R ry en ry R rz dan rx R rz
|
||||
cnf.append([-var_rel(rid, rx, ry), -var_rel(rid, ry, rz), var_rel(rid, rx, rz)])
|
||||
cnf.append([-var_row_rel(rid, rx, ry), -var_row_rel(rid, ry, rz), var_row_rel(rid, rx, rz)])
|
||||
|
||||
# Constraint zodat de relaties samen alle elementen kunnen onderscheiden.
|
||||
# (Aka: the bijbehorende quotienten zijn joint-injective.)
|
||||
|
@ -107,6 +134,22 @@ for xi, xo in enumerate(os):
|
|||
# Tenminste een rid moet een verschil maken
|
||||
cnf.append([-var_rel(rid, xo, yo) for rid in rids])
|
||||
|
||||
# Als outputs equivalent zijn, dan ook sommige rijen, en andersom.
|
||||
print('rel <=> row_rel')
|
||||
for rid in rids:
|
||||
for rx in rows:
|
||||
for ry in rows:
|
||||
osx = [mealy_sem(machine, rx + c) for c in cols]
|
||||
osy = [mealy_sem(machine, ry + c) for c in cols]
|
||||
oss = list(zip(osx, osy))
|
||||
|
||||
# (ox1 ~ oy1 and ox2 ~ oy2 and ...) => rx ~ ry
|
||||
cnf.append([-var_rel(rid, ox, oy) for (ox, oy) in oss] + [var_row_rel(rid, rx, ry)])
|
||||
|
||||
# rx ~ ry => oxi ~ oyi
|
||||
for (ox, oy) in oss:
|
||||
cnf.append([-var_row_rel(rid, rx, ry), var_rel(rid, ox, oy)])
|
||||
|
||||
# De constraints die zorgen dat representanten ook echt representanten zijn.
|
||||
print('- representatives (r)')
|
||||
for rid in rids:
|
||||
|
@ -126,26 +169,12 @@ print('- representatives at most k')
|
|||
cnf_optim = CardEnc.atmost([var_row_rep(rid, rx) for rid in rids for rx in rows], total_size, vpool=vpool)
|
||||
cnf.extend(cnf_optim)
|
||||
|
||||
# Als outputs equivalent zijn, dan ook sommige rijen, en andersom.
|
||||
print('rel <=> row_rel')
|
||||
for rid in rids:
|
||||
for rx in rows:
|
||||
for ry in rows:
|
||||
if ry <= rx:
|
||||
continue
|
||||
osx = [mealy_sem(machine, rx + c) for c in cols]
|
||||
osy = [mealy_sem(machine, ry + c) for c in cols]
|
||||
oss = zip(osx, osy)
|
||||
|
||||
# (ox1 ~ oy1 and ox2 ~ oy2 and ...) => rx ~ ry
|
||||
cnf.append([-var_rel(rid, ox, oy) for (ox, oy) in oss] + [var_row_rel(rid, rx, ry)])
|
||||
|
||||
# rx ~ ry => oxi ~ oyi
|
||||
for (ox, oy) in oss:
|
||||
cnf.append([-var_row_rel(rid, rx, ry), var_rel(rid, ox, oy)])
|
||||
def print_eqrel(rel, xs):
|
||||
print_table(lambda r, c: 'Y' if rel(r, c) else '·', xs, xs)
|
||||
|
||||
|
||||
# Probleem oplossen met solver :-).
|
||||
##################################
|
||||
# Probleem oplossen met solver :-)
|
||||
print('Start solving')
|
||||
print('- copying formula')
|
||||
with Solver(bootstrap_with=cnf) as solver:
|
||||
|
@ -166,6 +195,14 @@ with Solver(bootstrap_with=cnf) as solver:
|
|||
if l < 0: model[-l] = False
|
||||
else: model[l] = True
|
||||
|
||||
for rid in rids:
|
||||
print(f'Relation {rid}:')
|
||||
print_eqrel(lambda x, y: model[var_rel(rid, x, y)], os)
|
||||
|
||||
for rid in rids:
|
||||
print(f'Row relation {rid}:')
|
||||
print_eqrel(lambda x, y: model[var_row_rel(rid, x, y)], rows)
|
||||
|
||||
# print equivalence classes
|
||||
count = 0
|
||||
for rid in rids:
|
||||
|
|
|
@ -5,12 +5,13 @@ from pysat.formula import CNF
|
|||
|
||||
### Gebruik:
|
||||
# Stap 1: pip3 install python-sat
|
||||
# Stap 2: python3 decomp-sat.py
|
||||
# Stap 2: python3 decompose_set.py
|
||||
|
||||
# Een verzameling X ontbinden in factoren X1 ... Xc, zodat X ⊆ X1 × ... × Xc.
|
||||
# Hierbij is c een parameter (het aantal componenten), en ook het aantal
|
||||
# elementen van X1 t/m Xc moet vooraf bepaald zijn, dat is 'total_size'.
|
||||
|
||||
|
||||
# Voorbeeld data
|
||||
# snel voorbeeld: n = 27, c = 3 en total_size = 9
|
||||
# langzaam vb.: n = 151, c = 4 en total_size = 15
|
||||
|
@ -32,7 +33,6 @@ rids = [i for i in range(c)] # components
|
|||
# c = 1 1 1 1 1 2 2 2 2 3 2 3 3 3 4 3 4 4 4 5
|
||||
|
||||
|
||||
|
||||
print('Start encoding')
|
||||
vpool = IDPool()
|
||||
cnf = CNF()
|
||||
|
@ -97,6 +97,7 @@ print('- representatives at most k')
|
|||
cnf_optim = CardEnc.atmost([var_rep(rid, xo) for rid in rids for xo in os], total_size, vpool=vpool)
|
||||
cnf.extend(cnf_optim)
|
||||
|
||||
|
||||
# Probleem oplossen met solver :-).
|
||||
print('Start solving')
|
||||
print('- copying formula')
|
||||
|
|
Loading…
Add table
Reference in a new issue