1
Fork 0
mirror of https://git.cs.ou.nl/joshua.moerman/mealy-decompose.git synced 2025-04-30 02:07:44 +02:00

bugfix in decompose_mealy.py and it actually works now

This commit is contained in:
Joshua Moerman 2024-04-03 20:31:57 +02:00
parent f5072a9b40
commit f7b3d27478
2 changed files with 71 additions and 33 deletions

View file

@ -5,11 +5,16 @@ from pysat.formula import CNF
### Gebruik:
# Stap 1: pip3 install python-sat
# Stap 2: python3 decomp-sat.py
# Stap 2: python3 decompose_mealy.py
###################################
# Wat dingetjes over Mealy machines
# Voorbeeld: 2n states, input-alfabet 'a' en 'b', outputs [0...n-1]
def rick_koenders_machine(N):
transition_fun = {((n, False), 'a') : ((n+1) % 3, False) for n in range(N)}
transition_fun |= {(((n+1) % 3, True), 'a') : (n % 3, True) for n in range(N)}
transition_fun = {((n, False), 'a') : ((n+1) % N, False) for n in range(N)}
transition_fun |= {(((n+1) % N, True), 'a') : (n % N, True) for n in range(N)}
transition_fun |= {((n, b), 'b') : (n, not b) for b in [False, True] for n in range(N)}
output_fun = {((n, b), 'a') : n for b in [False, True] for n in range(N)}
output_fun |= {((n, b), 'b') : 0 for b in [False, True] for n in range(N)}
@ -29,23 +34,45 @@ def mealy_sem_q(machine, word, state):
def mealy_sem(machine, word):
return mealy_sem_q(machine, word, machine['initial_state'])
def print_table(cell, rs, cs):
first_col_size = max([len(str(r)) for r in rs])
col_size = 1 + max([len(str(c)) for c in cs])
print(''.rjust(first_col_size), end='')
for c in cs:
print(str(c).rjust(col_size), end='')
print('')
for r in rs:
print(str(r).rjust(first_col_size), end='')
for c in cs:
print(cell(r, c).rjust(col_size), end='')
print('')
################
# Voorbeeld data
machine = rick_koenders_machine(3)
machine = rick_koenders_machine(4) # 8 states
# L* table
rows = ['', 'a', 'aa', 'b', 'ab', 'aab', 'abaa', 'aabab']
cols = ['a', 'aa', 'aaa', 'b', 'ab', 'ba']
# L* table: Niet noodzakelijk volledig, werkt ook met minder data, maar ik
# weet niet wat voor garanties we dan kunnen geven. Het is sowieso maar de
# vraag of de kolommen voldoende zijn als we projecteren.
rows = ['', 'a', 'aa', 'aaa', 'aaaa', 'b', 'ab', 'aab', 'aaab']
cols = ['a', 'aa', 'aaa', 'aaaa', 'b', 'ab', 'ba', 'abab']
# We zoeken 2 componenten, grootte 5 (is minder dan 6)
print_table(lambda r, c: str(mealy_sem(machine, r+c)), rows, cols)
# We zoeken 2 componenten met gezamelijke grootte 6 (minder dan 8)
# als de de total_size te laag is => UNSAT => duurt lang
c = 2
total_size = 5 # als deze te laag is => UNSAT => duurt lang
os = machine['outputs'] # outputs
rids = [i for i in range(c)] # components
total_size = 6
########################
# Encodering naar logica
print('Start encoding')
os = machine['outputs'] # outputs
rids = [i for i in range(c)] # components
vpool = IDPool()
cnf = CNF()
@ -97,7 +124,7 @@ for rid in rids:
for ry in rows:
for rz in rows:
# als rx R ry en ry R rz dan rx R rz
cnf.append([-var_rel(rid, rx, ry), -var_rel(rid, ry, rz), var_rel(rid, rx, rz)])
cnf.append([-var_row_rel(rid, rx, ry), -var_row_rel(rid, ry, rz), var_row_rel(rid, rx, rz)])
# Constraint zodat de relaties samen alle elementen kunnen onderscheiden.
# (Aka: the bijbehorende quotienten zijn joint-injective.)
@ -107,6 +134,22 @@ for xi, xo in enumerate(os):
# Tenminste een rid moet een verschil maken
cnf.append([-var_rel(rid, xo, yo) for rid in rids])
# Als outputs equivalent zijn, dan ook sommige rijen, en andersom.
print('rel <=> row_rel')
for rid in rids:
for rx in rows:
for ry in rows:
osx = [mealy_sem(machine, rx + c) for c in cols]
osy = [mealy_sem(machine, ry + c) for c in cols]
oss = list(zip(osx, osy))
# (ox1 ~ oy1 and ox2 ~ oy2 and ...) => rx ~ ry
cnf.append([-var_rel(rid, ox, oy) for (ox, oy) in oss] + [var_row_rel(rid, rx, ry)])
# rx ~ ry => oxi ~ oyi
for (ox, oy) in oss:
cnf.append([-var_row_rel(rid, rx, ry), var_rel(rid, ox, oy)])
# De constraints die zorgen dat representanten ook echt representanten zijn.
print('- representatives (r)')
for rid in rids:
@ -126,26 +169,12 @@ print('- representatives at most k')
cnf_optim = CardEnc.atmost([var_row_rep(rid, rx) for rid in rids for rx in rows], total_size, vpool=vpool)
cnf.extend(cnf_optim)
# Als outputs equivalent zijn, dan ook sommige rijen, en andersom.
print('rel <=> row_rel')
for rid in rids:
for rx in rows:
for ry in rows:
if ry <= rx:
continue
osx = [mealy_sem(machine, rx + c) for c in cols]
osy = [mealy_sem(machine, ry + c) for c in cols]
oss = zip(osx, osy)
# (ox1 ~ oy1 and ox2 ~ oy2 and ...) => rx ~ ry
cnf.append([-var_rel(rid, ox, oy) for (ox, oy) in oss] + [var_row_rel(rid, rx, ry)])
# rx ~ ry => oxi ~ oyi
for (ox, oy) in oss:
cnf.append([-var_row_rel(rid, rx, ry), var_rel(rid, ox, oy)])
def print_eqrel(rel, xs):
print_table(lambda r, c: 'Y' if rel(r, c) else '·', xs, xs)
# Probleem oplossen met solver :-).
##################################
# Probleem oplossen met solver :-)
print('Start solving')
print('- copying formula')
with Solver(bootstrap_with=cnf) as solver:
@ -166,6 +195,14 @@ with Solver(bootstrap_with=cnf) as solver:
if l < 0: model[-l] = False
else: model[l] = True
for rid in rids:
print(f'Relation {rid}:')
print_eqrel(lambda x, y: model[var_rel(rid, x, y)], os)
for rid in rids:
print(f'Row relation {rid}:')
print_eqrel(lambda x, y: model[var_row_rel(rid, x, y)], rows)
# print equivalence classes
count = 0
for rid in rids:

View file

@ -5,12 +5,13 @@ from pysat.formula import CNF
### Gebruik:
# Stap 1: pip3 install python-sat
# Stap 2: python3 decomp-sat.py
# Stap 2: python3 decompose_set.py
# Een verzameling X ontbinden in factoren X1 ... Xc, zodat X ⊆ X1 × ... × Xc.
# Hierbij is c een parameter (het aantal componenten), en ook het aantal
# elementen van X1 t/m Xc moet vooraf bepaald zijn, dat is 'total_size'.
# Voorbeeld data
# snel voorbeeld: n = 27, c = 3 en total_size = 9
# langzaam vb.: n = 151, c = 4 en total_size = 15
@ -32,7 +33,6 @@ rids = [i for i in range(c)] # components
# c = 1 1 1 1 1 2 2 2 2 3 2 3 3 3 4 3 4 4 4 5
print('Start encoding')
vpool = IDPool()
cnf = CNF()
@ -97,6 +97,7 @@ print('- representatives at most k')
cnf_optim = CardEnc.atmost([var_rep(rid, xo) for rid in rids for xo in os], total_size, vpool=vpool)
cnf.extend(cnf_optim)
# Probleem oplossen met solver :-).
print('Start solving')
print('- copying formula')