mirror of
https://git.cs.ou.nl/joshua.moerman/mealy-decompose.git
synced 2025-04-29 17:57:44 +02:00
205 lines
8 KiB
Haskell
205 lines
8 KiB
Haskell
{-# LANGUAGE OverloadedStrings #-}
|
|
{-# LANGUAGE PartialTypeSignatures #-}
|
|
{-# OPTIONS_GHC -Wno-partial-type-signatures #-}
|
|
|
|
module Main where
|
|
|
|
import Data.Partition
|
|
import Data.Preorder
|
|
import DotParser (readDotFile)
|
|
import DotWriter
|
|
import Mealy
|
|
import MealyRefine
|
|
import Merger
|
|
|
|
import Control.Monad (when)
|
|
import Data.Bifunctor
|
|
import Data.List (sortOn)
|
|
import Data.List.Ordered (nubSort)
|
|
import Data.Map.Strict qualified as Map
|
|
import Data.Maybe (isNothing)
|
|
import Data.Set qualified as Set
|
|
import Data.Text qualified as T
|
|
import Data.Text.IO qualified as T
|
|
import Data.Text.Lazy.IO qualified as TL
|
|
import Data.Tuple (swap)
|
|
import System.Environment
|
|
import System.Exit (exitFailure)
|
|
|
|
extraChecks :: Bool
|
|
extraChecks = False
|
|
|
|
main :: IO ()
|
|
main = do
|
|
-- COMMAND LINE
|
|
---------------
|
|
ls <- getArgs
|
|
case ls of
|
|
[dotFile] -> mainFun dotFile 2
|
|
[dotFile, cs] -> mainFun dotFile (read cs)
|
|
_ -> do
|
|
putStrLn "Please provide a dot file as argument"
|
|
exitFailure
|
|
|
|
mainFun :: String -> Int -> IO ()
|
|
mainFun dotFile numComponents = do
|
|
let
|
|
report str = appendFile "results/log.txt" (dotFile <> "\t" <> str <> "\n")
|
|
|
|
-- READING INPUT
|
|
----------------
|
|
putStrLn $ "reading " <> dotFile
|
|
machine <- readDotFile dotFile
|
|
|
|
-- PREPROCESSING
|
|
----------------
|
|
let (outputFuns, reverseFuns) = preprocess machine
|
|
printBasics outputFuns reverseFuns machine
|
|
|
|
-- MINIMISING EACH COMPONENT
|
|
----------------------------
|
|
let mappedOutputFuns o = [(i, (o ==) . f) | (i, f) <- outputFuns]
|
|
projections = [(o, refineFuns (mappedOutputFuns o) reverseFuns (states machine)) | o <- (outputs machine)]
|
|
|
|
putStrLn $ "\nComponents " <> show (length (outputs machine))
|
|
mapM_ (\(o, p) -> putStr " " >> T.putStr o >> putStr " has size " >> print (numBlocks p)) projections
|
|
|
|
-- REDUCING NUMBER OF COMPONENTS
|
|
-- by checking which partitions are equivalent
|
|
----------------------------------------------
|
|
let (equiv, uniqPartitions) = equivalenceClasses comparePartitions projections
|
|
|
|
putStrLn $ "\nRepresentatives " <> show (length uniqPartitions)
|
|
print . fmap fst $ uniqPartitions
|
|
|
|
-- putStrLn "\nEquivalences"
|
|
-- mapM_ (\(o2, o1) -> putStrLn $ " " <> show o2 <> " == " <> show o1) (Map.assocs equiv)
|
|
|
|
-- COMPUTING THE LATTICE OF COMPONENTS
|
|
-- Then we compare each pair of partitions. We only keep the finest
|
|
-- partitions, since the coarse ones don't provide value to us.
|
|
-------------------------------------------------------------------
|
|
let
|
|
(topMods, downSets) = maximalElements comparePartitions uniqPartitions
|
|
foo (a, b) = (numBlocks b, a)
|
|
sortedTopMods = (sortOn (negate . fst) . fmap foo $ topMods)
|
|
|
|
putStrLn $ "\nTop modules " <> show (length topMods)
|
|
mapM_ (\(b, o) -> putStr " " >> T.putStr o >> putStr " has size " >> print b) sortedTopMods
|
|
|
|
-- HEURISTIC MERGING
|
|
-- Then we try to combine paritions, so that we don't end up with
|
|
-- too many components. (Which would be too big to be useful.)
|
|
-----------------------------------------------------------------
|
|
let
|
|
numStrategy current
|
|
| numberOfComponents current <= numComponents = StopWith (value current)
|
|
| otherwise = Continue
|
|
prevStrategy current = case previous current of
|
|
Just prev -> if (totalSize prev < totalSize current) then StopWith (value prev) else Continue
|
|
_ -> Continue
|
|
strategy c = case prevStrategy c of
|
|
StopWith x -> StopWith x
|
|
Continue -> numStrategy c
|
|
|
|
putStrLn $ "\nHeuristic merging"
|
|
projmap <- heuristicMerger topMods strategy
|
|
|
|
putStrLn $ "\nDone"
|
|
putStrLn $ " components: " <> show (length projmap)
|
|
putStrLn $ " sizes: " <> show (fmap (numBlocks . snd) projmap)
|
|
putStrLn "Start writing output files"
|
|
|
|
report $ "PAR-BIT-DECOMP" <> "\t" <> (show (length (states machine))) <> "\t" <> (show (length (inputs machine))) <> "\t" <> (show (length (outputs machine))) <> "\t" <> show (length projmap) <> "\t" <> show (sum (fmap (numBlocks . snd) projmap)) <> "\t" <> show (fmap (numBlocks . snd) projmap)
|
|
|
|
-- OUTPUT
|
|
---------
|
|
let
|
|
equivInv = converseRelation equiv
|
|
projmapN = zip projmap [1 :: Int ..]
|
|
action ((os, p), componentIdx) = do
|
|
let
|
|
name = T.intercalate "x" os
|
|
osWithRel = concat $ os : [Map.findWithDefault [] o downSets | o <- os]
|
|
osWithRelAndEquiv = concat $ osWithRel : [Map.findWithDefault [] o equivInv | o <- osWithRel]
|
|
componentOutputs = Set.fromList osWithRelAndEquiv
|
|
proj = projectToComponent (`Set.member` componentOutputs) machine
|
|
-- Sanity check: compute partition again
|
|
partition = refineMealy proj
|
|
|
|
putStrLn $ "\nComponent " <> show os
|
|
when extraChecks (putStrLn $ " Correct? " <> show (comparePartitions p partition))
|
|
putStrLn $ " Size = " <> show (numBlocks p)
|
|
|
|
do
|
|
let
|
|
filename = "partition_" <> show componentIdx <> ".dot"
|
|
content = T.unlines . fmap T.unwords . toBlocks $ p
|
|
|
|
putStrLn $ " Output (partition) in file " <> filename
|
|
T.writeFile ("results/" <> filename) content
|
|
|
|
do
|
|
let
|
|
MealyMachine{..} = proj
|
|
-- We enumerate all transitions in the full automaton
|
|
transitions = [(s, i, o, t) | s <- states, i <- inputs, let (o, t) = behaviour s i]
|
|
-- This is the quotient map, from state to block
|
|
state2block = (Map.!) (getPartition p)
|
|
-- We apply this to each transition, and then nubSort the duplicates away
|
|
transitionsBlocks = nubSort [(state2block s, i, o, state2block t) | (s, i, o, t) <- transitions]
|
|
-- The initial state should be first
|
|
initialBlock = state2block initialState
|
|
-- Sorting on "/= initialBlock" puts the initialBlock in front
|
|
initialFirst = sortOn (\(s, _, _, _) -> s /= initialBlock) transitionsBlocks
|
|
|
|
-- Convert to a file
|
|
filename1 = "component_" <> show componentIdx <> ".dot"
|
|
content1 = toString . mealyToDot name $ initialFirst
|
|
|
|
-- So far so good, `initialFirst` could serve as our output
|
|
-- But we do one more optimisation on the machine
|
|
-- We remove inputs, on which the machine does nothing
|
|
deadInputs0 = Map.fromListWith (++) . fmap (\(s, i, o, t) -> (i, [(s, o, t)])) $ initialFirst
|
|
deadInputs = Map.keysSet . Map.filter (all (\(s, o, t) -> s == t && isNothing o)) $ deadInputs0
|
|
result = filter (\(_, i, _, _) -> i `Set.notMember` deadInputs) initialFirst
|
|
|
|
-- Convert to a file
|
|
filename2 = "component_reduced_" <> show componentIdx <> ".dot"
|
|
content2 = toString . mealyToDot name $ result
|
|
|
|
putStrLn $ " Output (reduced machine) in file " <> filename1
|
|
TL.writeFile ("results/" <> filename1) content1
|
|
|
|
putStrLn $ " Dead inputs = " <> show (Set.size deadInputs)
|
|
|
|
putStrLn $ " Output (reduced machine) in file " <> filename2
|
|
TL.writeFile ("results/" <> filename2) content2
|
|
|
|
mapM_ action projmapN
|
|
|
|
-- * Helper functions
|
|
|
|
-- | Computes the predecessors of each state.
|
|
preprocess :: _ => MealyMachine _ _ _ -> _
|
|
preprocess MealyMachine{..} = (outputFuns, reverseFuns)
|
|
where
|
|
outputFuns = [(i, fun) | i <- inputs, let fun s = fst (behaviour s i)]
|
|
reverseTransitionMaps i = Map.fromListWith (++) [(t, [s]) | s <- states, let t = snd (behaviour s i)]
|
|
reverseFuns = [(i, fun) | i <- inputs, let mm = reverseTransitionMaps i, let fun s = Map.findWithDefault [] s mm]
|
|
|
|
-- | Prints basic info.
|
|
printBasics :: _ => _ -> _ -> MealyMachine _ _ _ -> IO _
|
|
printBasics outputFuns reverseFuns MealyMachine{..} = do
|
|
putStrLn $ (show . length $ states) <> " states, " <> (show . length $ inputs) <> " inputs and " <> (show . length $ outputs) <> " outputs"
|
|
when extraChecks $ do
|
|
printPartition (refineFuns outputFuns reverseFuns states)
|
|
putStrLn ""
|
|
|
|
-- | This functions inverts a map. In the new map the values are lists.
|
|
converseRelation :: Ord b => Map.Map a b -> Map.Map b [a]
|
|
converseRelation = Map.fromListWith (++) . fmap (second pure . swap) . Map.assocs
|
|
|
|
-- | Prints the number of blocks.
|
|
printPartition :: Partition s -> IO ()
|
|
printPartition p = putStrLn $ "number of states = " <> show (numBlocks p)
|