1
Fork 0
mirror of https://git.cs.ou.nl/joshua.moerman/mealy-decompose.git synced 2025-04-30 02:07:44 +02:00
mealy-decompose/app/Main.hs
2023-12-19 22:19:24 +01:00

192 lines
7 KiB
Haskell

module Main where
import DotParser
import DotWriter
import Mealy
import MealyRefine
import Merger
import Partition
import Control.Monad (forM_, when)
import Control.Monad.Trans.State.Strict
import Data.Bifunctor
import Data.List (sort, sortOn, intercalate)
import Data.List.Ordered (nubSort)
import Data.Map.Strict qualified as Map
import Data.Maybe (mapMaybe)
import Data.Set qualified as Set
import Data.Tuple (swap)
import System.Environment
import Text.Megaparsec
converseRelation :: (Ord a, Ord b) => Map.Map a b -> Map.Map b [a]
converseRelation m = Map.fromListWith (++) . fmap (second pure . swap) . Map.assocs $ m
{-
Hacked together, you can view the result with:
tred relation.dot | dot -Tpng -G"rankdir=BT" > relation.png
tred is the graphviz tool to remove transitive edges. And the rankdir
attribute flips the graph upside down.
-}
main :: IO ()
main = do
-- Read dot file
[dotFile] <- getArgs
print dotFile
transitions <- mapMaybe (parseMaybe parseTransFull) . lines <$> readFile dotFile
-- convert to mealy
let machine = convertToMealy transitions
-- print some basic info
putStrLn $ (show . length $ states machine) <> " states, " <> (show . length $ inputs machine) <> " inputs and " <> (show . length $ outputs machine) <> " outputs"
putStrLn "Small sample:"
print . take 4 . states $ machine
print . take 4 . inputs $ machine
print . take 4 . outputs $ machine
-- -- DEBUG OUTPUT
-- forM_ (states machine) (\s -> do
-- print s
-- forM_ (inputs machine) (\i -> do
-- putStr " "
-- let (o, t) = behaviour machine s i
-- putStrLn $ "--" <> (show i) <> "/" <> (show o) <> "->" <> (show t)
-- )
-- )
let printPartition p = putStrLn $ "number of states = " <> show (numBlocks p)
-- Minimise input, so we know the actual number of states
printPartition (refineMealy (mealyMachineToEncoding machine))
putStrLn ""
-- Then compute each projection
-- I did some manual preprocessing, these are the only interesting bits
let -- outs = ["10", "10-O9", "2.2", "3.0", "3.1", "3.10", "3.12", "3.13", "3.14", "3.16", "3.17", "3.18", "3.19", "3.2", "3.20", "3.21", "3.3", "3.4", "3.6", "3.7", "3.8", "3.9", "5.0", "5.1", "5.12", "5.13", "5.17", "5.2", "5.21", "5.23", "5.6", "5.7", "5.8", "5.9", "quiescence"]
outs = outputs machine
(projections0, state2idx) = allProjections machine outs
projections = zip outs $ fmap refineMealy projections0
-- Print number of states of each projection
forM_ projections (\(o, partition) -> do
putStr $ o <> " -> "
printPartition partition
)
-- First we check eqiuvalent partitions, so that we only work on one
-- item in each equivalence class. This could be merged with the next
-- phase of checking refinement, and that would be faster. But this is
-- simpler.
let checkRelsFor o1 p1 =
forM_ projections (\(o2, p2) -> do
(repr, ls) <- get
-- We skip if o2 is equivelent to an earlier o
when (o1 < o2 && o2 `Map.notMember` repr) $ do
case isEquivalent p1 p2 of
-- Equivalent: let o2 point to o1
True -> put (Map.insert o2 o1 repr, ls)
False -> return ()
)
checkAllRels projs =
forM_ projs (\(o1, p1) -> do
-- First we check if o1 is equivalent to an earlier o
-- If so, we skip it. Else, we add it to the unique
-- components and compare to all others.
(repr, ls) <- get
when (o1 `Map.notMember` repr) $ do
put (repr, (o1, p1):ls)
checkRelsFor o1 p1
)
(equiv, uniqPartitions) = execState (checkAllRels projections) (Map.empty, [])
putStrLn ""
putStrLn "Equivalences"
forM_ (Map.assocs equiv) (\(o2, o1) -> do
putStrLn $ " " <> (show o2) <> " == " <> (show o1)
)
-- Then we compare each pair of partitions. If one is a coarsening of
-- another, we can skip it later on. That is to say: we only want the
-- finest partitions.
let compareAll partitions =
forM_ partitions (\(o1, b1) ->
forM_ partitions (\(o2, b2) ->
when (o1 < o2) $ do
ls <- get
case comparePartitions b1 b2 of
Equivalent -> error "cannot happen"
Refinement -> put $ (o1, o2):ls
Coarsening -> put $ (o2, o1):ls
Incomparable -> return ()
)
)
rel = execState (compareAll uniqPartitions) []
putStrLn ""
putStrLn "Relation, coarser points to finer (bigger)"
forM_ rel (\(o1, o2) -> do
putStrLn $ " " <> (show o2) <> " -> " <> (show o1)
)
-- Get rid of the coarser partitions
let lowElements = Set.fromList . fmap snd $ rel
allElements = Set.fromList . fmap fst $ uniqPartitions
topElements = Set.difference allElements lowElements
mods = Map.fromList uniqPartitions -- could be a lazy map
topMods = Map.assocs $ Map.restrictKeys mods topElements
foo (a, b) = (numBlocks b, a)
putStrLn ""
putStrLn "Top modules"
forM_ (reverse . sort . fmap foo $ topMods) (\(b, o) -> do
putStrLn $ " " <> (show o) <> " has size " <> (show b)
)
let strategy MergerStats{..}
| numberOfComponents <= 4 = Stop
| otherwise = Continue
projmap <- heuristicMerger topMods strategy
let equivInv = converseRelation equiv
relMap = Map.fromListWith (++) . fmap (second pure) $ rel
projmapN = zip projmap [1..]
forM_ projmapN (\((os, p), i) -> do
let name = intercalate "x" os
filename = "component" <> show i <> ".dot"
osWithRel = concat $ os:[Map.findWithDefault [] o relMap | o <- os]
osWithRelAndEquiv = concat $ osWithRel:[Map.findWithDefault [] o equivInv | o <- osWithRel]
componentOutputs = Set.fromList osWithRelAndEquiv
proj = projectToComponent (flip Set.member componentOutputs) machine
-- Sanity check: compute partition again
partition = refineMealy . mealyMachineToEncoding $ proj
putStrLn $ ""
putStrLn $ "Component " <> show os
putStrLn $ "Correct? " <> show (comparePartitions p partition)
putStrLn $ "Size = " <> show (numBlocks p)
putStrLn $ "Output in file " <> filename
let MealyMachine{..} = proj
-- We enumerate all transitions in the full automaton
transitions = [(s, i, o, t) | s <- states, i <- inputs, let (o, t) = behaviour s i]
-- This is the quotient map, from state to block
state2block = blockOfState p . (state2idx Map.!)
-- We apply this to each transition, and then nubSort the duplicates away
transitionsBlocks = nubSort [(state2block s, i, o, state2block t) | (s, i, o, t) <- transitions]
-- The initial state should be first
initialBlock = state2block initialState
-- Sorting on "/= initialBlock" puts the initialBlock in front
initialFirst = sortOn (\(s,_,_,_) -> s /= initialBlock) transitionsBlocks
-- Convert to a file
content = toString . mealyToDot name $ initialFirst
writeFile filename content
)
return ()