1
Fork 0
mirror of https://git.cs.ou.nl/joshua.moerman/mealy-decompose.git synced 2025-04-29 17:57:44 +02:00
mealy-decompose/hs/app/DecomposeOutput.hs

202 lines
8.3 KiB
Haskell

{-# LANGUAGE PartialTypeSignatures #-}
{-# OPTIONS_GHC -Wno-partial-type-signatures #-}
module DecomposeOutput where
import CommonOptions
import Data.Partition
import Data.Preorder
import DotParser (readDotFile)
import DotWriter
import Mealy
import MealyRefine
import Merger
import Control.Monad (when)
import Data.Bifunctor
import Data.List (sortOn)
import Data.List.Ordered (nubSort)
import Data.Map.Strict qualified as Map
import Data.Maybe (isNothing)
import Data.Set qualified as Set
import Data.Text qualified as T
import Data.Text.IO qualified as T
import Data.Text.Lazy.IO qualified as TL
import Data.Tuple (swap)
import Options.Applicative
data DecomposeOutputOptions = DecomposeOutputOptions
{ filename :: FilePath
, numComponents :: Int
}
deriving Show
decomposeOutputOptionsParser :: _
decomposeOutputOptionsParser =
DecomposeOutputOptions
<$> argument str (help "Filename to read (dot format)" <> metavar "FILE")
<*> option auto (long "components" <> short 'c' <> help "Number of components" <> metavar "NUM" <> showDefault <> value 2)
<**> helper
mainDecomposeOutput :: DecomposeOutputOptions -> CommonOptions -> IO ()
mainDecomposeOutput DecomposeOutputOptions{..} CommonOptions{..} = do
let
report s = appendFile "results/log.txt" (filename <> "\t" <> s <> "\n")
-- READING INPUT
----------------
putStrLn $ "reading " <> filename
machine <- readDotFile filename
-- PREPROCESSING
----------------
let (outputFuns, reverseFuns) = preprocess machine
printBasics outputFuns reverseFuns machine extraChecks
-- MINIMISING EACH COMPONENT
----------------------------
let mappedOutputFuns o = [(i, (o ==) . f) | (i, f) <- outputFuns]
projections = [(o, refineFuns (mappedOutputFuns o) reverseFuns (states machine)) | o <- outputs machine]
putStrLn $ "\nComponents " <> show (length (outputs machine))
mapM_ (\(o, p) -> putStr " " >> T.putStr o >> putStr " has size " >> print (numBlocks p)) projections
-- REDUCING NUMBER OF COMPONENTS
-- by checking which partitions are equivalent
----------------------------------------------
let (equiv, uniqPartitions) = equivalenceClasses comparePartitions projections
putStrLn $ "\nRepresentatives " <> show (length uniqPartitions)
print . fmap fst $ uniqPartitions
-- putStrLn "\nEquivalences"
-- mapM_ (\(o2, o1) -> putStrLn $ " " <> show o2 <> " == " <> show o1) (Map.assocs equiv)
-- COMPUTING THE LATTICE OF COMPONENTS
-- Then we compare each pair of partitions. We only keep the finest
-- partitions, since the coarse ones don't provide value to us.
-------------------------------------------------------------------
let
(topMods, downSets) = maximalElements comparePartitions uniqPartitions
foo (a, b) = (numBlocks b, a)
sortedTopMods = sortOn (negate . fst) . fmap foo $ topMods
putStrLn $ "\nTop modules " <> show (length topMods)
mapM_ (\(b, o) -> putStr " " >> T.putStr o >> putStr " has size " >> print b) sortedTopMods
-- HEURISTIC MERGING
-- Then we try to combine paritions, so that we don't end up with
-- too many components. (Which would be too big to be useful.)
-----------------------------------------------------------------
let
numStrategy current
| numberOfComponents current <= numComponents = StopWith (componentPartitions current)
| otherwise = Continue
prevStrategy current = case previous current of
Just prev -> if totalSize prev < totalSize current then StopWith (componentPartitions prev) else Continue
_ -> Continue
strategy c = case prevStrategy c of
StopWith x -> StopWith x
Continue -> numStrategy c
putStrLn "\nHeuristic merging"
projmap <- heuristicMerger topMods strategy
putStrLn "\nDone"
putStrLn $ " components: " <> show (length projmap)
putStrLn $ " sizes: " <> show (fmap (numBlocks . snd) projmap)
putStrLn "Start writing output files"
report $ "PAR-BIT-DECOMP" <> "\t" <> show (length (states machine)) <> "\t" <> show (length (inputs machine)) <> "\t" <> show (length (outputs machine)) <> "\t" <> show (length projmap) <> "\t" <> show (sum (fmap (numBlocks . snd) projmap)) <> "\t" <> show (fmap (numBlocks . snd) projmap)
-- OUTPUT
---------
let
equivInv = converseRelation equiv
projmapN = zip projmap [1 :: Int ..]
processComponent ((os, p), componentIdx) = do
let
name = T.intercalate "x" os
osWithRel = concat $ os : [Map.findWithDefault [] o downSets | o <- os]
osWithRelAndEquiv = concat $ osWithRel : [Map.findWithDefault [] o equivInv | o <- osWithRel]
componentOutputs = Set.fromList osWithRelAndEquiv
proj = projectToComponent (`Set.member` componentOutputs) machine
-- Sanity check: compute partition again
partition = refineMealy proj
putStrLn $ "\nComponent " <> show os
when extraChecks (putStrLn $ " Correct? " <> show (comparePartitions p partition))
putStrLn $ " Size = " <> show (numBlocks p)
do
let
filename' = "partition_" <> show componentIdx <> ".dot"
content = T.unlines . fmap T.unwords . toBlocks $ p
putStrLn $ " Output (partition) in file " <> filename'
T.writeFile ("results/" <> filename') content
do
let
MealyMachine{..} = proj
-- We enumerate all transitions in the full automaton
transitions = [(s, i, o, t) | s <- states, i <- inputs, let (o, t) = behaviour s i]
-- This is the quotient map, from state to block
state2block = (Map.!) (getPartition p)
-- We apply this to each transition, and then nubSort the duplicates away
transitionsBlocks = nubSort [(state2block s, i, o, state2block t) | (s, i, o, t) <- transitions]
-- The initial state should be first
initialBlock = state2block initialState
-- Sorting on "/= initialBlock" puts the initialBlock in front
initialFirst = sortOn (\(s, _, _, _) -> s /= initialBlock) transitionsBlocks
-- Convert to a file
filename1 = "component_" <> show componentIdx <> ".dot"
content1 = toString . mealyToDot name $ initialFirst
-- So far so good, `initialFirst` could serve as our output
-- But we do one more optimisation on the machine
-- We remove inputs, on which the machine does nothing
deadInputs0 = Map.fromListWith (++) . fmap (\(s, i, o, t) -> (i, [(s, o, t)])) $ initialFirst
deadInputs = Map.keysSet . Map.filter (all (\(s, o, t) -> s == t && isNothing o)) $ deadInputs0
result = filter (\(_, i, _, _) -> i `Set.notMember` deadInputs) initialFirst
-- Convert to a file
filename2 = "component_reduced_" <> show componentIdx <> ".dot"
content2 = toString . mealyToDot name $ result
putStrLn $ " Output (reduced machine) in file " <> filename1
TL.writeFile ("results/" <> filename1) content1
putStrLn $ " Dead inputs = " <> show (Set.size deadInputs)
putStrLn $ " Output (reduced machine) in file " <> filename2
TL.writeFile ("results/" <> filename2) content2
mapM_ processComponent projmapN
-- * Helper functions
-- | Computes the predecessors of each state.
preprocess :: _ => MealyMachine _ _ _ -> _
preprocess MealyMachine{..} = (outputFuns, reverseFuns)
where
outputFuns = [(i, fun) | i <- inputs, let fun s = fst (behaviour s i)]
reverseTransitionMaps i = Map.fromListWith (++) [(t, [s]) | s <- states, let t = snd (behaviour s i)]
reverseFuns = [(i, fun) | i <- inputs, let mm = reverseTransitionMaps i, let fun s = Map.findWithDefault [] s mm]
-- | Prints basic info.
printBasics :: _ => _ -> _ -> MealyMachine _ _ _ -> Bool -> IO _
printBasics outputFuns reverseFuns MealyMachine{..} extraChecksEnabled = do
putStrLn $ (show . length $ states) <> " states, " <> (show . length $ inputs) <> " inputs and " <> (show . length $ outputs) <> " outputs"
when extraChecksEnabled $ do
printPartition (refineFuns outputFuns reverseFuns states)
putStrLn ""
-- | This functions inverts a map. In the new map the values are lists.
converseRelation :: Ord b => Map.Map a b -> Map.Map b [a]
converseRelation = Map.fromListWith (++) . fmap (second pure . swap) . Map.assocs
-- | Prints the number of blocks.
printPartition :: Partition s -> IO ()
printPartition p = putStrLn $ "number of states = " <> show (numBlocks p)