Browse Source

Woah, first iteration (with DAU4 wavelet metric)

master
Joshua Moerman 11 years ago
commit
328dcbc471
  1. 6
      .gitignore
  2. 15
      CMakeLists.txt
  3. BIN
      lib/.DS_Store
  4. 9
      lib/CMakeLists.txt
  5. 64
      lib/av.cpp
  6. 71
      lib/av.hpp
  7. 105
      lib/fingerprint.cpp
  8. 55
      lib/fingerprint.hpp
  9. 2
      lib/image_database.cpp
  10. 63
      lib/image_database.hpp
  11. 150
      lib/image_io.cpp
  12. 42
      lib/image_io.hpp
  13. 114
      lib/utilities.hpp
  14. 3
      lib/wavelet.hpp
  15. 109
      lib/wavelet_2.hpp
  16. 37
      lib/wavelet_constants.hpp
  17. 12
      src/CMakeLists.txt
  18. 55
      src/compress.cpp
  19. 19
      src/fingerprint_test.cpp
  20. 162
      src/main.cpp
  21. 47
      src/needle.cpp
  22. 75
      src/writer.cpp

6
.gitignore

@ -0,0 +1,6 @@
.DS_Store
build
database*
*.user
*.jpg

15
CMakeLists.txt

@ -0,0 +1,15 @@
project(Mozaic)
cmake_minimum_required(VERSION 2.8)
add_definitions(-std=c++1y)
find_package(Boost REQUIRED COMPONENTS program_options filesystem system serialization)
include_directories(SYSTEM ${Boost_INCLUDE_DIRS})
set(libs ${libs} ${Boost_LIBRARIES})
# add_subdirectory("contrib")
add_subdirectory("lib")
add_subdirectory("src")
# file(GLOB resources "resources/*")
# file(COPY ${resources} DESTINATION ${CMAKE_BINARY_DIR})

BIN
lib/.DS_Store

Binary file not shown.

9
lib/CMakeLists.txt

@ -0,0 +1,9 @@
file(GLOB sources "*.cpp")
file(GLOB headers "*.hpp")
set(libs avformat avcodec avutil swscale)
add_library(common ${headers} ${sources})
target_link_libraries(common ${libs})
target_include_directories(common PUBLIC ".")

64
lib/av.cpp

@ -0,0 +1,64 @@
#include "av.hpp"
extern "C" {
#include <libavutil/frame.h>
#include <libavformat/avformat.h>
#include <libavcodec/avcodec.h>
#include <libswscale/swscale.h>
}
#include <string>
#include <cassert>
namespace av {
format_context format_open_input(const std::string& filename, AVInputFormat* format, AVDictionary** options){
AVFormatContext * ctx = nullptr;
avformat_open_input(&ctx, filename.c_str(), format, options);
if(!ctx) throw error("Unable to open input " + filename);
// This might be optional, but AFAIK people always do this after opening input
avformat_find_stream_info(ctx, options);
return {ctx, [](auto x){ avformat_close_input(&x); }};
}
format_context format_alloc_context(){
auto ptr = avformat_alloc_context();
if(!ptr) throw error("Could not allocate AVFormatContext");
return {avformat_alloc_context(), &avformat_free_context};
}
open_codec codec_open(AVCodecContext* ctx, AVCodec* codec, AVDictionary** options){
if(!ctx) throw error("Invalid codec context");
if(!codec) throw error("Invalid codec");
if(avcodec_open2(ctx, codec, options) < 0) throw error("Could not open codec");
return {ctx, [](auto x){ avcodec_close(x); }};
}
packet read_frame(format_context& ctx, packet_buffer& p){
if(!av_read_frame(ctx.get(), &p)){
return {nullptr, &av_free_packet};
} else {
return {&p, &av_free_packet};
}
}
frame frame_alloc() {
auto ptr = av_frame_alloc();
if(!ptr) throw error("Could not allocate AVFrame");
return {ptr, [](auto x){ av_frame_free(&x); }};
}
frame frame_clone(const frame& f){
auto ptr = av_frame_clone(f.get());
if(!ptr) throw error("Could not clone AVFrame");
return {ptr, [](auto x){ av_frame_free(&x); }};
}
AVPixelFormat get_format(const frame& f){
return static_cast<AVPixelFormat>(f->format);
}
}

71
lib/av.hpp

@ -0,0 +1,71 @@
#pragma once
extern "C" {
#include <libavutil/mem.h>
#include <libavutil/pixfmt.h>
typedef struct AVDictionary AVDictionary;
typedef struct AVFormatContext AVFormatContext;
typedef struct AVInputFormat AVInputFormat;
typedef struct AVCodecContext AVCodecContext;
typedef struct AVCodec AVCodec;
typedef struct AVPacket AVPacket;
typedef struct AVFrame AVFrame;
}
#include <memory>
#include <stdexcept>
namespace av {
// Generic error class
struct error : public std::runtime_error {
using std::runtime_error::runtime_error;
};
// Type of a free function (for unique_ptr)
template <typename T>
using deleter = void(*)(T*);
// AVFormatContext related
using format_context = std::unique_ptr<AVFormatContext, deleter<AVFormatContext>>;
format_context format_open_input(std::string const & filename, AVInputFormat* format, AVDictionary** options);
format_context format_alloc_context();
// AVCodec related
using open_codec = std::unique_ptr<AVCodecContext, deleter<AVCodecContext>>;
open_codec codec_open(AVCodecContext* ctx, AVCodec* codec, AVDictionary** options);
// AVPacket related (this is somewhat strange, but matches the usecase)
// I need to rethink this
using packet_buffer = AVPacket;
using packet = std::unique_ptr<AVPacket, deleter<AVPacket>>;
packet read_frame(format_context & ctx, packet_buffer & p);
// AVFrame related
using frame = std::unique_ptr<AVFrame, deleter<AVFrame>>;
frame frame_alloc();
frame frame_clone(frame const & f);
AVPixelFormat get_format(frame const & f);
// Allocator
template <typename T>
struct allocator {
using value_type = T;
using size_type = size_t;
T* allocate(size_type n) const {
auto ptr = av_malloc(n * sizeof(T));
if(!ptr) throw std::bad_alloc();
return static_cast<T*>(ptr);
}
void deallocate(T* ptr, size_type /*n*/) const noexcept {
av_free(ptr);
}
};
template <typename T, typename S>
bool operator==(allocator<T> const &, allocator<S> const &) noexcept { return true; }
template <typename T, typename S>
bool operator!=(allocator<T> const &, allocator<S> const &) noexcept { return false; }
}

105
lib/fingerprint.cpp

@ -0,0 +1,105 @@
#include "fingerprint.hpp"
#include "wavelet.hpp"
#include "utilities.hpp"
#include <ostream>
#include <cmath>
rgb_wavelet_coefficients rgb_wavelet_coefficients::calculate(const raw_rgb_image& image){
rgb_wavelet_coefficients ret;
std::vector<double> vector(make_u(image.width() * image.height()));
// for every color
for(unsigned int color = 0; color < 3; ++color){
auto& coefficient_array = color == 0 ? ret.reds : (color == 1 ? ret.greens : ret.blues);
unsigned int array_index = 0;
for(unsigned int n = 0; n < make_u(image.width() * image.height()); ++n){
vector[n] = 2.0 * image.data[3*n + color] / double(255) - 1.0;
}
wvlt::wavelet_2D(vector.data(), make_u(image.width()), make_u(image.height()));
auto copy = vector;
for(auto & x : copy) x = std::abs(x);
auto n_coefficients = coefficient_array.size();
std::nth_element(copy.begin(), copy.begin() + n_coefficients, copy.end(), std::greater<double>());
double threshold = copy[n_coefficients-1];
for(unsigned int n = 0; n < vector.size(); ++n){
auto x = vector[n];
if(std::abs(x) >= threshold) {
coefficient_array[array_index++] = std::make_pair(n, x);
}
if(array_index >= coefficient_array.size()) {
break;
}
}
}
return ret;
}
static double square(double x){
return x*x;
}
double rgb_wavelet_coefficients::distance_to(const rgb_wavelet_coefficients& y) const {
double distance = 0;
for(unsigned int color = 0; color < 3; ++color){
unsigned int i = 0, j = 0;
auto& x_array = color == 0 ? reds : (color == 1 ? greens : blues);
auto& y_array = color == 0 ? y.reds : (color == 1 ? y.greens : y.blues);
// "merge"
while(i < x_array.size() && j < y_array.size()){
auto x_pair = x_array[i];
auto y_pair = y_array[j];
if(x_pair.first == y_pair.first) {
distance += square(y_pair.second - x_pair.second);
++i;
++j;
} else if(x_pair.first < y_pair.first) {
distance += square(x_pair.second);
++i;
} else {
distance += square(y_pair.second);
++j;
}
}
// remaining part, either x or y
for(; i < x_array.size(); ++i){
distance += square(x_array[i].second);
}
for(; j < y_array.size(); ++j){
distance += square(y_array[j].second);
}
}
return distance;
}
namespace std {
template <typename U, typename V>
ostream& operator<<(ostream& out, pair<U, V> const & p){
return out << '(' << p.first << ", " << p.second << ')';
}
}
std::ostream& operator<<(std::ostream& out, rgb_wavelet_coefficients const & x){
out << "rgb_wavelet_coefficients" << std::endl;
for(int color = 0; color < 3; ++color){
auto& coefficient_array = color == 0 ? x.reds : (color == 1 ? x.greens : x.blues);
out << '[' << coefficient_array[0];
for(unsigned int i = 1; i < coefficient_array.size(); ++i) out << ", " << coefficient_array[i];
out << ']' << std::endl;
}
return out;
}

55
lib/fingerprint.hpp

@ -0,0 +1,55 @@
#pragma once
#include "image_io.hpp"
#include <boost/serialization/access.hpp>
#include <boost/serialization/array.hpp>
#include <boost/serialization/utility.hpp>
#include <utility>
#include <array>
#include <iosfwd>
namespace boost {
namespace serialization {
template<class Archive, class T, size_t N>
void serialize(Archive & ar, std::array<T,N> & a, const unsigned int /*version*/) {
ar & make_array(a.data(), a.size());
}
} // namespace serialization
} // namespace boost
// Default implementation
template <typename Fingerprint>
struct fingerprint_traits {
static Fingerprint calculate(raw_rgb_image const & image) {
return Fingerprint::calculate(image);
}
static auto distance(Fingerprint const & x, Fingerprint const & y) {
return x.distance_to(y);
}
};
struct rgb_wavelet_coefficients {
// a double for (x, y) location represented in a single int
using coefficient = std::pair<int, double>;
std::array<coefficient, 20> reds;
std::array<coefficient, 20> greens;
std::array<coefficient, 20> blues;
static rgb_wavelet_coefficients calculate(raw_rgb_image const & image);
double distance_to(rgb_wavelet_coefficients const & y) const;
private:
friend class boost::serialization::access;
template<class Archive>
void serialize(Archive & ar, const unsigned int /*version*/){
ar & reds;
ar & greens;
ar & blues;
}
};
std::ostream& operator<<(std::ostream& out, rgb_wavelet_coefficients const & x);

2
lib/image_database.cpp

@ -0,0 +1,2 @@
#include "image_database.hpp"

63
lib/image_database.hpp

@ -0,0 +1,63 @@
#pragma once
#include <image_io.hpp>
#include <fingerprint.hpp>
#include <boost/serialization/access.hpp>
#include <boost/serialization/vector.hpp>
#include <vector>
#include <string>
template <typename Fingerprint, typename Traits = fingerprint_traits<Fingerprint>>
struct image_database {
using index = size_t;
void add(std::string filename){
auto image = open_as_rgb(filename);
auto fingerprint = Traits::calculate(image);
filenames.push_back(filename);
fingerprints.push_back(fingerprint);
}
std::string filename(index i) const {
return filenames.at(i);
}
Fingerprint fingerprint(index i) const {
return fingerprints.at(i);
}
auto size() const {
return fingerprints.size();
}
index nearest_image(raw_rgb_image const & image) const {
auto fingerprint = Traits::calculate(image);
index best_index = 0;
auto best_distance = Traits::distance(fingerprint, fingerprints[0]);
for(index i = 1; i < fingerprints.size(); ++i){
auto distance = Traits::distance(fingerprint, fingerprints[i]);
if(distance < best_distance) {
best_distance = distance;
best_index = i;
}
}
return best_index;
}
private:
friend class boost::serialization::access;
template<class Archive>
void serialize(Archive & ar, const unsigned int /*version*/){
ar & filenames;
ar & fingerprints;
}
std::vector<std::string> filenames;
std::vector<Fingerprint> fingerprints;
};

150
lib/image_io.cpp

@ -0,0 +1,150 @@
#include "image_io.hpp"
#include "utilities.hpp"
extern "C" {
#include <libavutil/frame.h>
#include <libavutil/mem.h>
#include <libavformat/avformat.h>
#include <libavcodec/avcodec.h>
#include <libswscale/swscale.h>
}
#include <stdexcept>
#include <iostream>
#include <algorithm>
#include <cassert>
raw_rgb_image::raw_rgb_image(int W, int H)
: data(make_u(avpicture_get_size(AV_PIX_FMT_RGB24, W, H)))
, frame(av::frame_alloc())
{
avpicture_fill(reinterpret_cast<AVPicture*>(frame.get()), data.data(), AV_PIX_FMT_RGB24, W, H);
frame->width = W;
frame->height = H;
frame->format = AV_PIX_FMT_RGB24;
}
int raw_rgb_image::width() const { return frame->width; }
int raw_rgb_image::height() const { return frame->height; }
AVPixelFormat raw_rgb_image::format() const { return av::get_format(frame); }
void save_as_ppm(raw_rgb_image const & image, std::string const & filename) {
// Open file
FILE* file = fopen(filename.c_str(), "wb");
if(!file) throw std::runtime_error("cannot save");
// Write header
fprintf(stderr, "P6\n%d %d\n255\n", image.width(), image.height());
fprintf(file, "P6\n%d %d\n255\n", image.width(), image.height());
// Write pixel data
for(int y = 0; y < image.height(); y++)
fwrite(image.data.data() + 3*y*image.width(), 1, make_u(3*image.width()), file);
// Close file
fclose(file);
}
av::frame open_image(std::string const & filename){
// Open the file
auto format_context = av::format_open_input(filename, nullptr, nullptr);
// Get the codec and let us own the buffers
auto codec_context = format_context->streams[0]->codec;
auto codec = avcodec_find_decoder(codec_context->codec_id);
codec_context->refcounted_frames = 1;
// Open the codec
auto opened_codec = av::codec_open(codec_context, codec, nullptr);
// Allocate frame
av::frame frame = av::frame_alloc();
// things to read and decode it
av::packet_buffer empty_packet;
int finished = 0;
while(auto packet = av::read_frame(format_context, empty_packet)) {
if(packet->stream_index != 0) continue;
int ret = avcodec_decode_video2(opened_codec.get(), frame.get(), &finished, packet.get());
if (ret <= 0) {
printf("Error [%d] while decoding frame: %s\n", ret, strerror(AVERROR(ret)));
throw std::runtime_error("boem packet");
}
// we only need the first frame
if(finished) break;
}
// some decoders need extra passes
while(!finished) {
avcodec_decode_video2(opened_codec.get(), frame.get(), &finished, &empty_packet);
av_free_packet(&empty_packet);
}
return frame;
}
void crop_to_square(av::frame& frame){
int diff = frame->height - frame->width;
int ret = 0;
if(diff > 0) {
ret = av_picture_crop(reinterpret_cast<AVPicture*>(frame.get()), reinterpret_cast<AVPicture*>(frame.get()), av::get_format(frame), diff/2, 0);
frame->height = frame->width;
} else if(diff < 0) {
ret = av_picture_crop(reinterpret_cast<AVPicture*>(frame.get()), reinterpret_cast<AVPicture*>(frame.get()), av::get_format(frame), 0, -diff/2);
frame->width = frame->height;
}
if(ret < 0) throw std::runtime_error("boem crop");
}
av::frame crop_to_square(av::frame && frame){
crop_to_square(frame);
return std::move(frame);
}
raw_rgb_image to_raw_rgb_image(av::frame const & frame, int new_width, int new_height){
raw_rgb_image image(new_width, new_height);
auto c = sws_getContext(frame->width, frame->height, av::get_format(frame), image.width(), image.height(), image.format(), 0, nullptr, nullptr, nullptr);
if(!c) throw std::runtime_error("boem sws context");
sws_scale (c, {frame->data}, {frame->linesize}, 0, frame->height, {image.frame->data}, {image.frame->linesize});
sws_freeContext(c);
return image;
}
void apply_to_tiles(const std::string& filename, int h_tiles, int v_tiles, std::function<void (int, int, raw_rgb_image const &)> fun){
auto org_frame = open_image(filename);
// create clone to crop
av::frame cropped_frame = av::frame_clone(org_frame);
// create raw buffer for the callback
raw_rgb_image image(512, 512);
// create the tiles
cropped_frame->width = org_frame->width / h_tiles;
cropped_frame->height = org_frame->height / v_tiles;
for(int r = 0; r < v_tiles; ++r){
for(int c = 0; c < h_tiles; ++c){
int x_crop = c * cropped_frame->width;
int y_crop = r * cropped_frame->height;
//std::cout << "crop " << x_crop << ", " << y_crop << std::endl;
av_picture_crop(reinterpret_cast<AVPicture*>(cropped_frame.get()), reinterpret_cast<AVPicture*>(org_frame.get()), av::get_format(org_frame), y_crop, x_crop);
auto context = sws_getContext(cropped_frame->width, cropped_frame->height, av::get_format(org_frame), image.width(), image.height(), image.format(), 0, nullptr, nullptr, nullptr);
if(!context) throw std::runtime_error("boem sws context");
sws_scale (context, {cropped_frame->data}, {cropped_frame->linesize}, 0, cropped_frame->height, {image.frame->data}, {image.frame->linesize});
sws_freeContext(context);
fun(c, r, image);
}
}
}

42
lib/image_io.hpp

@ -0,0 +1,42 @@
#pragma once
#include "av.hpp"
#include <memory>
#include <string>
#include <vector>
#include <functional>
// Basic image representation
// 3 bytes per pixel (rgb), so size of data is width*height*3
struct raw_rgb_image {
std::vector<uint8_t, av::allocator<uint8_t>> data;
av::frame frame;
raw_rgb_image(int W, int H);
int width() const;
int height() const;
AVPixelFormat format() const;
};
// dumps image in ppm format
void save_as_ppm(raw_rgb_image const & image, std::string const & filename);
// opens an image in its own format
av::frame open_image(std::string const & filename);
// crops to the bottom right square (cheap operation)
void crop_to_square(av::frame & frame);
av::frame crop_to_square(av::frame && frame);
// converts and resizes
raw_rgb_image to_raw_rgb_image(av::frame const & frame, int new_width, int new_height);
// Legacy
inline raw_rgb_image open_as_rgb(const std::string &filename){
return to_raw_rgb_image(crop_to_square(open_image(filename)), 512, 512);
}
// apply function to every tile, fun :: Column, Row, Image -> Void
void apply_to_tiles(std::string const & filename, int h_tiles, int v_tiles, std::function<void(int, int, raw_rgb_image const &)> fun);

114
lib/utilities.hpp

@ -0,0 +1,114 @@
#pragma once
#include <string>
#include <chrono>
#include <vector>
#include <iostream>
#include <cassert>
template <typename Int>
bool is_pow_of_two(Int n){
return n && !(n & (n - 1));
}
template <typename Int>
bool is_even(Int n){
return (n & 1) == 0;
}
// Used to silence warnings, will assert in debug build
inline unsigned int make_u(int x){
assert(x >= 0);
return static_cast<unsigned int>(x);
}
// calculates integer 2-log such that:
// 2^(two_log(x)) >= x > 2^(two_log(x) - 1)
inline unsigned int two_log(unsigned int x){
if(x <= 1) return 0;
return 8*sizeof(unsigned int) - unsigned(__builtin_clz(x-1));
}
// calculates 2^x (by squaring)
inline unsigned int pow_two(unsigned int x){
unsigned int base = 2;
unsigned int y = 1;
while(x){
if(x & 1) y *= base;
x >>= 1;
base *= base;
}
return y;
}
inline uint8_t to_uint8_t(double x){
if(x >= 1) return 255;
if(x <= 0) return 0;
return static_cast<uint8_t>(255*x);
}
// Makes numbers human-readable with one decimal
// eg 2350000 becomes 2.3M
template <typename Int>
inline std::string human_string(Int n, std::string suffix = ""){
static const std::string names [] = {"", "K", "M", "G"};
unsigned int i = 0;
Int m = 10*n;
while(n > 1000 && i < sizeof(names)){
n /= 1000;
m /= 1000;
++i;
}
// cast is to make the old gcc 4.4 happy (it doesn't have all overloads of to_string)
return std::to_string(n) + "." + std::to_string(m % 10) + names[i] + suffix;
}
inline std::string field(std::string const & str){
const int length = 12;
if(str.size() > length) return str + ":\t";
auto add = length - str.size();
return str + ":" + std::string(add, ' ') + "\t";
}
// Prints a vector with brackets and commas
// Does not work recursively!
template <typename T>
void print_vec(std::vector<T> const & v){
auto it = v.begin(), end = v.end();
std::cout << "{" << *it++;
while(it != end) std::cout << ", " << *it++;
std::cout << "}\n";
}
// RAII struct for timing
struct timer{
typedef std::chrono::high_resolution_clock clock;
typedef std::chrono::time_point<clock> time;
typedef std::chrono::duration<double> seconds;
std::string name;
time begin;
timer(std::string name_)
: name(name_)
, begin(clock::now())
{}
~timer(){
time end = clock::now();
std::cout << name << "\t" << from_dur(end - begin) << std::endl;
}
static double from_dur(seconds s){
return s.count();
}
};
namespace colors {
inline std::string red(std::string s){
return "\x1b[31m" + s + "\x1b[39m";
}
inline std::string green(std::string s){
return "\x1b[32m" + s + "\x1b[39m";
}
}

3
lib/wavelet.hpp

@ -0,0 +1,3 @@
#pragma once
#include "wavelet_2.hpp"

109
lib/wavelet_2.hpp

@ -0,0 +1,109 @@
#pragma once
#include <cassert>
#include "utilities.hpp"
#include "wavelet_constants.hpp"
/* Rewrite of the basic functions
* This will make the adaption for the parallel case easier,
* because we can explicitly pass the two elements which are out of range
* (these are normally wrap-around values)
*
* These are also faster (testcase: size = 8, stride = 1, iterations = 100000)
* V2 0.00377901
* V1 0.0345114
*
* But also less abstract (which can be both a good thing and bad thing)
*
* wavelet function does not shuffle!
*/
namespace wvlt{
inline namespace V2 {
inline double inner_product(double* x, double const* coef, unsigned int stride){
return x[0] * coef[0] + x[stride] * coef[1] + x[2*stride] * coef[2] + x[3*stride] * coef[3];
}
// will calculate part of wavelete transform (in place!)
// size is size of vector x (so x[size-1] is valid)
// does not calculate "last two" elements (it does not assume periodicity)
// calculates size/stride - 2 elements of the output
inline void wavelet_mul_base(double* x, unsigned int size, unsigned int stride){
assert(x && is_even(size) && is_pow_of_two(stride) && 4*stride <= size);
for(unsigned int i = 0; i < size - 2*stride; i += 2*stride){
double y1 = inner_product(x + i, evn_coef, stride);
double y2 = inner_product(x + i, odd_coef, stride);
x[i] = y1;
x[i+stride] = y2;
}
}
// x1 and x2 are next elements, or wrap around
// calculates size/stride elements of the output
inline void wavelet_mul(double* x, double x1, double x2, unsigned int size, unsigned int stride){
assert(x && is_even(size) && is_pow_of_two(stride) && 2*stride <= size);
if(4*stride <= size)
wavelet_mul_base(x, size, stride);
unsigned int i = size - 2*stride;
double y1 = x[i] * evn_coef[0] + x[i+stride] * evn_coef[1] + x1 * evn_coef[2] + x2 * evn_coef[3];
double y2 = x[i] * odd_coef[0] + x[i+stride] * odd_coef[1] + x1 * odd_coef[2] + x2 * odd_coef[3];
x[i] = y1;
x[i+stride] = y2;
}
// will overwrite x, x2 and x1 are previous elements, or wrap around
// size is size of vector x (so x[size-1] is valid)
inline void wavelet_inv(double* x, double x1, double x2, unsigned int size, unsigned int stride){
assert(x && is_even(size) && is_pow_of_two(stride) && 4*stride <= size);
for(unsigned int i = size - 2*stride; i >= 2*stride; i -= 2*stride){
double y1 = inner_product(x + i - 2*stride, evn_coef_inv, stride);
double y2 = inner_product(x + i - 2*stride, odd_coef_inv, stride);
x[i] = y1;
x[i+stride] = y2;
}
unsigned int i = 0;
double y1 = x2 * evn_coef_inv[0] + x1 * evn_coef_inv[1] + x[i] * evn_coef_inv[2] + x[i+stride] * evn_coef_inv[3];
double y2 = x2 * odd_coef_inv[0] + x1 * odd_coef_inv[1] + x[i] * odd_coef_inv[2] + x[i+stride] * odd_coef_inv[3];
x[i] = y1;
x[i+stride] = y2;
}
// size indicates number of elements to process (so this is different from above!)
inline void wavelet(double* x, unsigned int size, unsigned int stride){
assert(x && is_pow_of_two(size) && size >= 4);
auto full_size = stride*size;
for(unsigned int i = 1; i <= size / 4; i <<= 1){
auto j = stride * i;
wavelet_mul(x, x[0], x[j], full_size, j);
}
}
inline void wavelet_2D(double* in, unsigned int width, unsigned int height){
for(unsigned int y = 0; y < height; ++y)
wavelet(in + y*width, width, 1);
for(unsigned int x = 0; x < width; ++x)
wavelet(in + x, height, width);
}
// size indicates number of elements to process (so this is different from above!)
inline void unwavelet(double* x, unsigned int size, unsigned int stride){
assert(x && is_pow_of_two(size) && size >= 4);
auto full_size = stride*size;
for(unsigned int i = size / 4; i >= 1; i >>= 1){
auto j = stride * i;
wavelet_inv(x, x[full_size-j], x[full_size-2*j], full_size, j);
}
}
inline void unwavelet_2D(double* in, unsigned int width, unsigned int height){
for(unsigned int x = 0; x < width; ++x)
unwavelet(in + x, height, width);
for(unsigned int y = 0; y < height; ++y)
unwavelet(in + y*width, width, 1);
}
}
}

37
lib/wavelet_constants.hpp

@ -0,0 +1,37 @@
#pragma once
#include <cmath>
namespace wvlt {
// first row of the matrix Wn
static double const evn_coef[] = {
(1.0 + std::sqrt(3.0))/(std::sqrt(32.0)),
(3.0 + std::sqrt(3.0))/(std::sqrt(32.0)),
(3.0 - std::sqrt(3.0))/(std::sqrt(32.0)),
(1.0 - std::sqrt(3.0))/(std::sqrt(32.0))
};
// second row of the matrix Wn
static double const odd_coef[] = {
evn_coef[3],
-evn_coef[2],
evn_coef[1],
-evn_coef[0]
};
// first (shifted) row of the matrix Wn^-1
static double const evn_coef_inv[] = {
evn_coef[2],
evn_coef[1],
evn_coef[0],
evn_coef[3]
};
// second (shifted) row of the matrix Wn^-1
static double const odd_coef_inv[] = {
evn_coef[3],
-evn_coef[0],
evn_coef[1],
-evn_coef[2]
};
}

12
src/CMakeLists.txt

@ -0,0 +1,12 @@
set (CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR})
file(GLOB sources "*.cpp")
set(libs common avformat avcodec avutil swscale ${Boost_LIBRARIES})
foreach(source ${sources})
get_filename_component(exec ${source} NAME_WE)
add_executable(${exec} ${source})
target_link_libraries(${exec} ${libs})
endforeach()

55
src/compress.cpp

@ -0,0 +1,55 @@
/*
* This does not literally comrpess the image
* But it shows how the image would look like after compressing and decomressing it, useful
* to see how different algorithms afect the image.
*/
#include <image_io.hpp>
#include <wavelet.hpp>
#include <boost/filesystem.hpp>
extern "C" {
#include <libavformat/avformat.h>
}
#include <algorithm>
#include <cmath>
using namespace std;
int main(){
av_register_all();
auto image = open_as_rgb("image.jpg");
std::vector<double> vector(make_u(image.width() * image.height()));
// for every color
for(unsigned int i = 0; i < 3; ++i){
for(unsigned int n = 0; n < make_u(image.width() * image.height()); ++n){
vector[n] = 2.0 * image.data[3*n + i] / double(255) - 1.0;
}
wvlt::wavelet_2D(vector.data(), make_u(image.width()), make_u(image.height()));
auto copy = vector;
for(auto & x : copy) x = std::abs(x);
unsigned int n_coefficients[] = {20, 20, 20};
std::nth_element(copy.begin(), copy.begin() + n_coefficients[i], copy.end(), std::greater<double>());
for(auto & x : vector){
if(std::abs(x) < copy[n_coefficients[i]]) x = 0;
}
wvlt::unwavelet_2D(vector.data(), make_u(image.width()), make_u(image.height()));
for(unsigned int n = 0; n < make_u(image.width() * image.height()); ++n){
image.data[3*n + i] = to_uint8_t(0.5 * vector[n] + 0.5);
}
}
save_as_ppm(image, "output.ppm");
}

19
src/fingerprint_test.cpp

@ -0,0 +1,19 @@
#include <fingerprint.hpp>
extern "C" {
#include <libavformat/avformat.h>
}
#include <iostream>
using namespace std;
int main(){
av_register_all();
auto image = open_as_rgb("test.jpg");
rgb_wavelet_coefficients x = rgb_wavelet_coefficients::calculate(image);
cout << x << endl;
cout << x.distance_to(x) << endl;
}

162
src/main.cpp

@ -0,0 +1,162 @@
#include <image_io.hpp>
#include <wavelet.hpp>
#include <image_database.hpp>
#include <fingerprint.hpp>
#include <boost/filesystem.hpp>
#include <boost/archive/binary_oarchive.hpp>
#include <boost/archive/binary_iarchive.hpp>
extern "C" {
#include <libavformat/avformat.h>
#include <libavcodec/avcodec.h>
#include <libavformat/avformat.h>
#include <libswscale/swscale.h>
}
#include <iostream>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
using namespace std;
namespace fs = boost::filesystem;
namespace ar = boost::archive;
using Database = image_database<rgb_wavelet_coefficients>;
using Mozaic = map<pair<int, int>, string>;
Database read_database(string const & database_directory){
image_database<rgb_wavelet_coefficients> db;
auto database_file = database_directory + ".db";
if (!boost::filesystem::exists(database_file)){
fs::path directory(database_directory);
fs::directory_iterator eod;
for(fs::directory_iterator it(directory); it != eod; ++it){
auto && path = it->path();
auto ext = path.extension();
if(ext != ".png" && ext != ".jpg") continue;
cout << colors::green("adding: ") << path.string() << endl;
db.add(path.string());
}
ofstream file(database_file);
ar::binary_oarchive archive(file);
archive << db;
} else {
ifstream file(database_file);
ar::binary_iarchive archive(file);
// read class state from archive
archive >> db;
}
cout << colors::green("read database: ") << db.size() << endl;
return db;
}
Mozaic create_mozaic(Database const & db, string const & filename, int h_tiles, int v_tiles){
map<pair<int, int>, string> mozaic;
apply_to_tiles("image.jpg", h_tiles, v_tiles, [&](int c, int r, raw_rgb_image const & image){
auto index = db.nearest_image(image);
cout << colors::red("tile ") << c << ", " << r << ": " << db.filename(index) << endl;
mozaic[make_pair(c, r)] = db.filename(index);
});
return mozaic;
}
void save_mozaic(Mozaic const & mozaic, string filename, int h_tiles, int v_tiles){
const auto pix_fmt = AV_PIX_FMT_YUVJ444P;
const auto codec_id= AV_CODEC_ID_MJPEG;
int tile_width = 128;
int tile_height = 128;
// Open all files we need
map<string, av::frame> frames;
for(auto&& x : mozaic){
// only open a file once
if(frames.count(x.second) > 0) continue;
frames.emplace(x.second, crop_to_square(open_image(x.second)));
}
auto total_width = h_tiles * tile_width;
auto total_height = v_tiles * tile_height;
// Create output frame
std::vector<uint8_t, av::allocator<uint8_t>> data(make_u(avpicture_get_size(pix_fmt, total_width, total_height)), 0);
av::frame frame = av::frame_alloc();
avpicture_fill(reinterpret_cast<AVPicture*>(frame.get()), data.data(), pix_fmt, total_width, total_height);
frame->width = total_width;
frame->height = total_height;
frame->format = pix_fmt;
// For each tile: get the part, copy input to it
av::frame frame_part = av::frame_clone(frame);
for(int r = 0; r < v_tiles; ++r) {
for(int c = 0; c < h_tiles; ++c){
av_picture_crop(reinterpret_cast<AVPicture*>(frame_part.get()), reinterpret_cast<AVPicture*>(frame.get()), av::get_format(frame), r * tile_height, c * tile_width);
frame_part->width = tile_width;
frame_part->height = tile_height;
auto&& input = frames.at(mozaic.at(make_pair(c, r)));
auto sws_context = sws_getContext(input->width, input->height, av::get_format(input), frame_part->width, frame_part->height, av::get_format(frame_part), 0, nullptr, nullptr, nullptr);
if(!sws_context) throw std::runtime_error("boem sws context");
sws_scale (sws_context, {input->data}, {input->linesize}, 0, input->height, {frame_part->data}, {frame_part->linesize});
sws_freeContext(sws_context);
}
}
// Done with the input
frames.clear();
// Encode
auto codec = avcodec_find_encoder(codec_id);
if(!codec) throw av::error("Could not find codec");
auto codec_ctx = std::unique_ptr<AVCodecContext, av::deleter<AVCodecContext>>(avcodec_alloc_context3(codec), [](auto x){ avcodec_free_context(&x); });
if(!codec_ctx) throw av::error("Could not allocate codec context");
codec_ctx->pix_fmt = pix_fmt;
codec_ctx->width = frame->width;
codec_ctx->height = frame->height;
codec_ctx->time_base = av_make_q(1, 1);
auto opened_codec = av::codec_open(codec_ctx.get(), codec, nullptr);
const auto buffer_size = avpicture_get_size(pix_fmt, codec_ctx->width, codec_ctx->height);
std::vector<uint8_t> buffer(make_u(buffer_size), 0);
auto output_size = avcodec_encode_video(codec_ctx.get(), buffer.data(), buffer_size, frame.get());
assert(output_size <= buffer_size);
cout << "output size" << output_size << endl;
auto file = fopen(filename.c_str(), "wb");
fwrite(buffer.data(), 1, make_u(output_size), file);
fclose(file);
}
int main(){
av_register_all();
string database_directory = "database";
string filename = "image.jpg";
string output = "output.jpg";
int h_tiles = 4 * 13;
int v_tiles = 3 * 13;
const auto db = read_database(database_directory);
const auto mozaic = create_mozaic(db, filename, h_tiles, v_tiles);
save_mozaic(mozaic, output, h_tiles, v_tiles);
// debugging
for(int r = 0; r < v_tiles; ++r){
for(int c = 0; c < h_tiles; ++c){
cout << mozaic.at(make_pair(c, r)) << "\t";
}
cout << endl;
}
}

47
src/needle.cpp

@ -0,0 +1,47 @@
#include <image_io.hpp>
#include <wavelet.hpp>
#include <image_database.hpp>
#include <fingerprint.hpp>
#include <boost/filesystem.hpp>
extern "C" {
#include <libavformat/avformat.h>
}
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
namespace fs = boost::filesystem;
int main(){
av_register_all();
string database_directory = "database";
string filename = "needle.jpg";
image_database<rgb_wavelet_coefficients> db;
fs::path directory(database_directory);
fs::directory_iterator eod;
for(fs::directory_iterator it(directory); it != eod; ++it){
auto && path = it->path();
auto ext = path.extension();
if(ext != ".png" && ext != ".jpg") continue;
cout << colors::green("adding: ") << path.string() << endl;
db.add(path.string());
}
while(true){
cout << "****************" << endl;
cout << colors::green("database: ") << db.size() << endl;
cout << colors::green("press enter to search match for: ") << filename << endl;
cin.ignore();
auto index = db.nearest_image(open_as_rgb(filename));
cout << colors::green("match: ") << db.filename(index) << endl;
}
}

75
src/writer.cpp

@ -0,0 +1,75 @@
#include <image_io.hpp>
#include <utilities.hpp>
extern "C" {
#include <libavcodec/avcodec.h>
#include <libavformat/avformat.h>
#include <libswscale/swscale.h>
}
using namespace std;
static void save_as_jpg(av::frame const & frame, std::string const & filename){
const auto pix_fmt = AV_PIX_FMT_YUVJ444P;
const auto codec_id= AV_CODEC_ID_MJPEG;
// Convert
int tile_width = 800;
int tile_height = 600;
int h_tiles = 8;
int v_tiles = 6;
std::vector<uint8_t, av::allocator<uint8_t>> data(make_u(avpicture_get_size(pix_fmt, h_tiles * tile_width, v_tiles * tile_height)), 0);
av::frame converted_frame = av::frame_alloc();
avpicture_fill(reinterpret_cast<AVPicture*>(converted_frame.get()), data.data(), pix_fmt, h_tiles * tile_width, v_tiles * tile_height);
converted_frame->width = h_tiles * tile_width;
converted_frame->height = v_tiles * tile_height;
converted_frame->format = pix_fmt;
auto sws_context = sws_getContext(frame->width, frame->height, av::get_format(frame), tile_width, tile_height, av::get_format(converted_frame), 0, nullptr, nullptr, nullptr);
if(!sws_context) throw std::runtime_error("boem sws context");
av::frame cropped_frame = av::frame_clone(converted_frame);
for(int r = 0; r < v_tiles; ++r) {
for(int c = 0; c < h_tiles; ++c){
av_picture_crop(reinterpret_cast<AVPicture*>(cropped_frame.get()), reinterpret_cast<AVPicture*>(converted_frame.get()), av::get_format(converted_frame), r * tile_height, c * tile_width);
sws_scale (sws_context, {frame->data}, {frame->linesize}, 0, frame->height, {cropped_frame->data}, {cropped_frame->linesize});
}
}
sws_freeContext(sws_context);
// Encode
auto codec = avcodec_find_encoder(codec_id);
if(!codec) throw av::error("Could not find codec");
auto codec_ctx = std::unique_ptr<AVCodecContext, av::deleter<AVCodecContext>>(avcodec_alloc_context3(codec), [](auto x){ avcodec_free_context(&x); });
if(!codec_ctx) throw av::error("Could not allocate codec context");
codec_ctx->pix_fmt = pix_fmt;
codec_ctx->width = converted_frame->width;
codec_ctx->height = converted_frame->height;
codec_ctx->time_base = av_make_q(1, 1);
auto opened_codec = av::codec_open(codec_ctx.get(), codec, nullptr);
const auto buffer_size = avpicture_get_size(pix_fmt, codec_ctx->width, codec_ctx->height);
std::vector<uint8_t> buffer(make_u(buffer_size), 0);
auto output_size = avcodec_encode_video(codec_ctx.get(), buffer.data(), buffer_size, converted_frame.get());
assert(output_size <= buffer_size);
cout << "output size" << output_size << endl;
auto file = fopen(filename.c_str(), "wb");
fwrite(buffer.data(), 1, make_u(output_size), file);
fclose(file);
}
int main(){
av_register_all();
while(true){
auto image = open_image("needle.png");
save_as_jpg(image, "output.jpg");
}
}
Loading…
Cancel
Save