Browse Source

Big cleanup. Better constness in av::*.

master
Joshua Moerman 10 years ago
parent
commit
521f16063b
  1. 25
      lib/av/av.cpp
  2. 18
      lib/av/av.hpp
  3. 44
      lib/av/av_base.hpp
  4. 2
      lib/av/sws.cpp
  5. 11
      lib/av/sws.hpp
  6. 6
      lib/fingerprints/math.hpp
  7. 58
      lib/fingerprints/rgb.cpp
  8. 30
      lib/fingerprints/rgb.hpp
  9. 88
      lib/fingerprints/wvlt_rgb.cpp
  10. 50
      lib/fingerprints/wvlt_rgb.hpp
  11. 119
      lib/image_io.cpp
  12. 11
      lib/image_io.hpp
  13. 45
      lib/read_database.hpp
  14. 46
      lib/utilities.hpp
  15. 3
      lib/wvlt/wavelet.hpp
  16. 109
      lib/wvlt/wavelet_2.hpp
  17. 37
      lib/wvlt/wavelet_constants.hpp
  18. 19
      lib/wvlt/wavelet_utilities.hpp
  19. 6
      src/compress.cpp
  20. 21
      src/fingerprint_test.cpp
  21. 58
      src/main.cpp

25
lib/av/av.cpp

@ -27,11 +27,28 @@ namespace av {
} }
open_codec codec_open(AVCodecContext* ctx, AVCodec* codec, AVDictionary** options){ codec find_encoder(AVCodecID codec_id){
auto ptr = avcodec_find_encoder(codec_id);
if(!ptr) throw error("Could not find codec");
return {ptr, nullptr};
}
codec_context context_alloc(codec const & codec){
auto ptr = avcodec_alloc_context3(codec.get());
if(!ptr) throw av::error("Could not allocate codec context");
return {ptr, [](auto x){ avcodec_free_context(&x); }};
}
codec_context context_from_stream(format_context const & ctx, size_t i){
return {ctx->streams[i]->codec, nullptr};
}
open_guard codec_open(codec_context & ctx, codec const & codec, AVDictionary** options){
if(!ctx) throw error("Invalid codec context"); if(!ctx) throw error("Invalid codec context");
if(!codec) throw error("Invalid codec"); if(!codec) throw error("Invalid codec");
if(avcodec_open2(ctx, codec, options) < 0) throw error("Could not open codec"); if(avcodec_open2(ctx.get(), codec.get(), options) < 0) throw error("Could not open codec");
return {ctx, [](auto x){ avcodec_close(x); }}; return {ctx.get(), [](auto x){ avcodec_close(x); }};
} }
@ -65,7 +82,7 @@ namespace av {
} }
frame crop(frame&& f, int left, int top, int width, int height){ frame crop(frame&& f, int left, int top, int width, int height){
if(left + width > f->width || top + height > f->height) throw error("Crop sizes do not match"); // if(left + width > f->width || top + height > f->height) throw error("Crop sizes do not match");
auto ptr = reinterpret_cast<AVPicture*>(f.get()); auto ptr = reinterpret_cast<AVPicture*>(f.get());
auto ret = av_picture_crop(ptr, ptr, av::get_format(f), top, left); auto ret = av_picture_crop(ptr, ptr, av::get_format(f), top, left);

18
lib/av/av.hpp

@ -4,6 +4,7 @@
extern "C" { extern "C" {
#include <libavutil/pixfmt.h> #include <libavutil/pixfmt.h>
#include <libavcodec/avcodec.h> // only needed for AVCodecID
typedef struct AVDictionary AVDictionary; typedef struct AVDictionary AVDictionary;
typedef struct AVFormatContext AVFormatContext; typedef struct AVFormatContext AVFormatContext;
@ -18,22 +19,29 @@ typedef struct AVFrame AVFrame;
namespace av { namespace av {
// AVFormatContext related // AVFormatContext related
using format_context = av::unique_ptr<AVFormatContext>; using format_context = wrapper<AVFormatContext>;
format_context format_open_input(std::string const & filename, AVInputFormat* format, AVDictionary** options); format_context format_open_input(std::string const & filename, AVInputFormat* format, AVDictionary** options);
format_context format_alloc_context(); format_context format_alloc_context();
// AVCodec related // AVCodec related
using open_codec = av::unique_ptr<AVCodecContext>; using codec = wrapper<AVCodec>;
open_codec codec_open(AVCodecContext* ctx, AVCodec* codec, AVDictionary** options); codec find_encoder(AVCodecID codec_id);
using codec_context = wrapper<AVCodecContext>;
codec_context context_alloc(codec const & codec);
codec_context context_from_stream(format_context const & ctx, size_t i);
using open_guard = wrapper<AVCodecContext>;
open_guard codec_open(codec_context & ctx, codec const & codec, AVDictionary** options);
// AVPacket related (this is somewhat strange, but matches the usecase) // AVPacket related (this is somewhat strange, but matches the usecase)
// I need to rethink this // I need to rethink this
using packet_buffer = AVPacket; using packet_buffer = AVPacket;
using packet = av::unique_ptr<AVPacket>; using packet = wrapper<AVPacket>;
packet read_frame(format_context & ctx, packet_buffer & p); packet read_frame(format_context & ctx, packet_buffer & p);
// AVFrame related // AVFrame related
using frame = av::unique_ptr<AVFrame>; using frame = wrapper<AVFrame>;
frame frame_alloc(); frame frame_alloc();
frame frame_clone(frame const & f); // creates a clone with the *same* buffer frame frame_clone(frame const & f); // creates a clone with the *same* buffer
AVPixelFormat get_format(frame const & f); AVPixelFormat get_format(frame const & f);

44
lib/av/av_base.hpp

@ -13,13 +13,49 @@ namespace av {
using runtime_error::runtime_error; using runtime_error::runtime_error;
}; };
// Type of a freeing function (for unique_ptr) // Type of a freeing function (for wrapper)
template <typename T> template <typename T>
using deleter = void(*)(T*); using deleter = void(*)(T*);
// Often used type // Kind of unique_ptr, but with const-semantics
template <typename T> template <typename T, typename D = deleter<T>>
using unique_ptr = std::unique_ptr<T, deleter<T>>; struct wrapper {
wrapper(T * data_ = nullptr, D deleter_ = D())
: data(data_)
, deleter(deleter_)
{}
wrapper(wrapper && o)
: data(o.data)
, deleter(o.deleter)
{ o.release(); }
wrapper & operator=(wrapper && o) {
data = o.data;
deleter = o.deleter;
o.release();
return *this;
}
wrapper(wrapper const & o) = delete;
wrapper & operator=(wrapper const & o) = delete;
~wrapper(){ reset(); }
T * get() { return data; }
T const * get() const { return data; }
T & operator*() { return *get(); }
T const & operator*() const { return *get(); }
T * operator->() { return get(); }
T const * operator->() const { return get(); }
T * release() { auto t = data; data = nullptr; return t; }
void reset() { if(data && deleter) deleter(data); data = nullptr; }
operator bool() const { return get(); }
private:
T * data;
D deleter;
};
// Allocator // Allocator
template <typename T> template <typename T>

2
lib/av/sws.cpp

@ -20,7 +20,7 @@ namespace sws {
return {ptr, &sws_freeContext}; return {ptr, &sws_freeContext};
} }
void scale(context const & c, av::frame const & src, av::frame const & dest){ void scale(context & c, av::frame const & src, av::frame & dest){
auto ret = sws_scale(c.get(), {src->data}, {src->linesize}, 0, src->height, {dest->data}, {dest->linesize}); auto ret = sws_scale(c.get(), {src->data}, {src->linesize}, 0, src->height, {dest->data}, {dest->linesize});
if(ret < 0) throw error("boem scale"); if(ret < 0) throw error("boem scale");
} }

11
lib/av/sws.hpp

@ -11,15 +11,10 @@ typedef struct SwsContext SwsContext;
#include <vector> #include <vector>
namespace sws{ namespace sws{
template <typename T> using namespace av;
using deleter = av::deleter<T>;
struct error : std::runtime_error { using context = wrapper<SwsContext>;
using runtime_error::runtime_error;
};
using context = std::unique_ptr<SwsContext, deleter<SwsContext>>;
context create_context(av::frame const & src, av::frame const & dest, int flags = 0, SwsFilter * src_filter = nullptr, SwsFilter * dest_filter = nullptr, double * params = nullptr); context create_context(av::frame const & src, av::frame const & dest, int flags = 0, SwsFilter * src_filter = nullptr, SwsFilter * dest_filter = nullptr, double * params = nullptr);
void scale(context const & c, av::frame const & src, av::frame const & dest); void scale(context & c, av::frame const & src, av::frame & dest);
} }

6
lib/fingerprints/math.hpp

@ -0,0 +1,6 @@
#pragma once
//! best function ever
inline double square(double x){
return x*x;
}

58
lib/fingerprints/rgb.cpp

@ -0,0 +1,58 @@
#include "rgb.hpp"
#include "math.hpp"
#include <image_io.hpp>
#include <av/sws.hpp>
#include <algorithm>
#include <iostream>
namespace fingerprints {
static raw_rgb_image downscale_step(av::frame const & frame, int factor) {
raw_rgb_image image(frame->width / factor, frame->height / factor);
auto context = sws::create_context(frame, image.frame);
sws::scale(context, frame, image.frame);
return image;
}
static raw_rgb_image downscale_to(av::frame const & frame, int w, int h){
// ffmpeg doesnt let us downscale all the way to 5 at once :(, so we do a loop
raw_rgb_image image;
auto* new_frame = &frame;
while((*new_frame)->width > 8*w && (*new_frame)->height > 8*h){
image = downscale_step(*new_frame, 4);
new_frame = &image.frame;
}
return to_raw_rgb_image(image.frame, w, h);
}
rgb rgb::pre_calculate(av::frame const & frame){
auto const image = downscale_to(crop_to_square(frame), 5, 5);
rgb ret;
ret.data.assign(image.data.size(), 0);
std::copy(image.data.begin(), image.data.end(), ret.data.begin());
return ret;
}
rgb rgb::calculate(const av::frame& frame){
return pre_calculate(frame);
}
double rgb::distance_to(const rgb& fingerprint) const {
assert(data.size() == fingerprint.data.size());
double distance = 0;
for(size_t i = 0; i < data.size(); ++i){
distance += square(data[i] - fingerprint.data[i]);
}
return distance;
}
} // namespace fingerprints

30
lib/fingerprints/rgb.hpp

@ -0,0 +1,30 @@
#pragma once
#include <av/av.hpp>
#include <fingerprint_traits.hpp>
#include <boost/serialization/access.hpp>
#include <boost/serialization/vector.hpp>
#include <string>
#include <vector>
namespace fingerprints {
struct rgb {
std::vector<uint8_t> data;
static rgb pre_calculate(av::frame const & frame);
static rgb calculate(av::frame const & frame);
double distance_to(rgb const & fingerprint) const;
static std::string name(){ return "rgb-25-25-25"; }
private:
friend class boost::serialization::access;
template<class Archive>
void serialize(Archive & ar, const unsigned int /*version*/){
ar & data;
}
};
} // namespace fingerprints

88
lib/fingerprints/wvlt_rgb.cpp

@ -0,0 +1,88 @@
#include "wvlt_rgb.hpp"
#include "math.hpp"
#include <image_io.hpp>
#include <utilities.hpp>
#include <wvlt/wavelet.hpp>
#include <ostream>
#include <cmath>
namespace fingerprints {
static const int size = 512;
wvlt_rgb::pre_fingerprint wvlt_rgb::pre_calculate(av::frame const & frame) {
auto const image = to_raw_rgb_image(crop_to_square(frame), size, size);
wvlt_rgb::pre_fingerprint ret;
// for every color
for(unsigned int color = 0; color < 3; ++color){
auto & vector = ret[color];
vector.assign(make_u(image.width() * image.height()), 0);
for(unsigned int n = 0; n < make_u(image.width() * image.height()); ++n){
vector[n] = 2.0 * image.data[3*n + color] / double(255) - 1.0;
}
wvlt::wavelet_2D(vector.data(), make_u(image.width()), make_u(image.height()));
}
return ret;
}
wvlt_rgb wvlt_rgb::calculate(av::frame const & frame){
auto const image = to_raw_rgb_image(crop_to_square(frame), size, size);
wvlt_rgb ret;
std::vector<double> vector(make_u(image.width() * image.height()), 0);
// for every color
for(unsigned int color = 0; color < 3; ++color){
auto& coefficient_array = color == 0 ? ret.reds : (color == 1 ? ret.greens : ret.blues);
unsigned int array_index = 0;
for(unsigned int n = 0; n < make_u(image.width() * image.height()); ++n){
vector[n] = 2.0 * image.data[3*n + color] / double(255) - 1.0;
}
wvlt::wavelet_2D(vector.data(), make_u(image.width()), make_u(image.height()));
auto copy = vector;
for(auto & x : copy) x = std::abs(x);
auto const n_coefficients = coefficient_array.size();
std::nth_element(copy.begin(), copy.begin() + n_coefficients, copy.end(), std::greater<double>());
auto const threshold = copy[n_coefficients-1];
for(unsigned int n = 0; n < vector.size(); ++n){
auto const x = vector[n];
if(std::abs(x) >= threshold) {
coefficient_array[array_index++] = std::make_pair(n, x);
}
if(array_index >= coefficient_array.size()) {
break;
}
}
}
return ret;
}
double wvlt_rgb::distance_to(pre_fingerprint const & fingerprint) const {
double distance = 0;
for(unsigned int color = 0; color < 3; ++color){
auto const & coefficients = color == 0 ? reds : (color == 1 ? greens : blues);
for(auto&& p : coefficients){
auto const x = p.second;
auto const y = fingerprint[color][p.first];
distance += square(x - y) - square(y);
}
}
return distance;
}
} // namespace fingerprints

50
lib/fingerprints/wvlt_rgb.hpp

@ -0,0 +1,50 @@
#pragma once
#include <av/av.hpp>
#include <fingerprint_traits.hpp>
#include <boost/serialization/access.hpp>
#include <boost/serialization/array.hpp>
#include <boost/serialization/utility.hpp>
#include <array>
#include <string>
#include <utility>
#include <vector>
namespace boost {
namespace serialization {
template<class Archive, class T, size_t N>
void serialize(Archive & ar, std::array<T,N> & a, const unsigned int /*version*/) {
ar & make_array(a.data(), a.size());
}
} // namespace serialization
} // namespace boost
namespace fingerprints {
struct wvlt_rgb {
// a double for (x, y) location represented in a single int
using coefficient = std::pair<int, double>;
using pre_fingerprint = std::array<std::vector<double>, 3>;
std::array<coefficient, 20> reds;
std::array<coefficient, 20> greens;
std::array<coefficient, 20> blues;
static pre_fingerprint pre_calculate(av::frame const & frame);
static wvlt_rgb calculate(av::frame const & frame);
double distance_to(pre_fingerprint const & fingerprint) const;
static std::string name(){ return "wvlt-rgb-20x20x20"; }
private:
friend class boost::serialization::access;
template<class Archive>
void serialize(Archive & ar, const unsigned int /*version*/){
ar & reds;
ar & greens;
ar & blues;
}
};
} // namespace fingerprints

119
lib/image_io.cpp

@ -1,6 +1,8 @@
#include "image_io.hpp" #include "image_io.hpp"
#include "utilities.hpp" #include "utilities.hpp"
#include <av/sws.hpp>
extern "C" { extern "C" {
#include <libavutil/frame.h> #include <libavutil/frame.h>
#include <libavutil/mem.h> #include <libavutil/mem.h>
@ -11,6 +13,7 @@ extern "C" {
#include <algorithm> #include <algorithm>
#include <cassert> #include <cassert>
#include <fstream>
#include <iostream> #include <iostream>
#include <stdexcept> #include <stdexcept>
@ -35,35 +38,17 @@ int raw_rgb_image::height() const { return frame->height; }
AVPixelFormat raw_rgb_image::format() const { return av::get_format(frame); } AVPixelFormat raw_rgb_image::format() const { return av::get_format(frame); }
void save_as_ppm(raw_rgb_image const & image, std::string const & filename) {
// Open file
FILE* file = fopen(filename.c_str(), "wb");
if(!file) throw std::runtime_error("cannot save");
// Write header
fprintf(stderr, "P6\n%d %d\n255\n", image.width(), image.height());
fprintf(file, "P6\n%d %d\n255\n", image.width(), image.height());
// Write pixel data
for(int y = 0; y < image.height(); y++)
fwrite(image.data.data() + 3*y*image.width(), 1, make_u(3*image.width()), file);
// Close file
fclose(file);
}
av::frame open_image(std::string const & filename){ av::frame open_image(std::string const & filename){
// Open the file // Open the file
auto format_context = av::format_open_input(filename, nullptr, nullptr); auto format_context = av::format_open_input(filename, nullptr, nullptr);
// Get the codec and let us own the buffers // Get the codec and let us own the buffers
auto codec_context = format_context->streams[0]->codec; auto codec_context = av::context_from_stream(format_context, 0);
auto codec = avcodec_find_decoder(codec_context->codec_id); const auto codec = avcodec_find_decoder(codec_context->codec_id);
codec_context->refcounted_frames = 1; codec_context->refcounted_frames = 1;
// Open the codec // Open the codec
auto opened_codec = av::codec_open(codec_context, codec, nullptr); const auto opened_codec = av::codec_open(codec_context, codec, nullptr);
// Allocate frame // Allocate frame
av::frame frame = av::frame_alloc(); av::frame frame = av::frame_alloc();
@ -74,7 +59,7 @@ av::frame open_image(std::string const & filename){
while(auto packet = av::read_frame(format_context, empty_packet)) { while(auto packet = av::read_frame(format_context, empty_packet)) {
if(packet->stream_index != 0) continue; if(packet->stream_index != 0) continue;
int ret = avcodec_decode_video2(opened_codec.get(), frame.get(), &finished, packet.get()); int ret = avcodec_decode_video2(codec_context.get(), frame.get(), &finished, packet.get());
if (ret <= 0) { if (ret <= 0) {
printf("Error [%d] while decoding frame: %s\n", ret, strerror(AVERROR(ret))); printf("Error [%d] while decoding frame: %s\n", ret, strerror(AVERROR(ret)));
throw std::runtime_error("boem packet"); throw std::runtime_error("boem packet");
@ -86,7 +71,7 @@ av::frame open_image(std::string const & filename){
// some decoders need extra passes // some decoders need extra passes
while(!finished) { while(!finished) {
avcodec_decode_video2(opened_codec.get(), frame.get(), &finished, &empty_packet); avcodec_decode_video2(codec_context.get(), frame.get(), &finished, &empty_packet);
av_free_packet(&empty_packet); av_free_packet(&empty_packet);
} }
@ -115,40 +100,31 @@ av::frame crop_to_square(av::frame && frame){
raw_rgb_image to_raw_rgb_image(av::frame const & frame, int new_width, int new_height){ raw_rgb_image to_raw_rgb_image(av::frame const & frame, int new_width, int new_height){
raw_rgb_image image(new_width, new_height); raw_rgb_image image(new_width, new_height);
auto c = sws_getContext(frame->width, frame->height, av::get_format(frame), image.width(), image.height(), image.format(), 0, nullptr, nullptr, nullptr); auto context = sws::create_context(frame, image.frame);
if(!c) throw std::runtime_error("boem sws context"); sws::scale(context, frame, image.frame);
sws_scale (c, {frame->data}, {frame->linesize}, 0, frame->height, {image.frame->data}, {image.frame->linesize});
sws_freeContext(c);
return image; return image;
} }
void apply_to_tiles(std::string const & filename, int h_tiles, int v_tiles, std::function<void(int, int, av::frame const &)> fun) { void apply_to_tiles(std::string const & filename, int h_tiles, int v_tiles, std::function<void(int, int, av::frame const &)> fun) {
auto org_frame = open_image(filename); const auto org_frame = open_image(filename);
// create clone to crop
av::frame cropped_frame = av::frame_clone(org_frame);
// create raw buffer for the callback // create raw buffer for the callback
// TODO: do not scale the cropped region // TODO: do not scale the cropped region
raw_rgb_image image(512, 512); raw_rgb_image image(512, 512);
// create the tiles // create the tiles
cropped_frame->width = org_frame->width / h_tiles; const int width = org_frame->width / h_tiles;
cropped_frame->height = org_frame->height / v_tiles; const int height = org_frame->height / v_tiles;
for(int r = 0; r < v_tiles; ++r){ for(int r = 0; r < v_tiles; ++r){
for(int c = 0; c < h_tiles; ++c){ for(int c = 0; c < h_tiles; ++c){
int x_crop = c * cropped_frame->width; const int x_crop = c * width;
int y_crop = r * cropped_frame->height; const int y_crop = r * height;
//std::cout << "crop " << x_crop << ", " << y_crop << std::endl;
av_picture_crop(reinterpret_cast<AVPicture*>(cropped_frame.get()), reinterpret_cast<AVPicture*>(org_frame.get()), av::get_format(org_frame), y_crop, x_crop);
auto context = sws_getContext(cropped_frame->width, cropped_frame->height, av::get_format(org_frame), image.width(), image.height(), image.format(), 0, nullptr, nullptr, nullptr);
if(!context) throw std::runtime_error("boem sws context");
sws_scale (context, {cropped_frame->data}, {cropped_frame->linesize}, 0, cropped_frame->height, {image.frame->data}, {image.frame->linesize});
sws_freeContext(context);
const auto cropped_frame = av::crop(org_frame, x_crop, y_crop, width, height);
auto context = sws::create_context(cropped_frame, image.frame);
sws::scale(context, cropped_frame, image.frame);
fun(c, r, image.frame); fun(c, r, image.frame);
} }
} }
@ -156,54 +132,41 @@ void apply_to_tiles(std::string const & filename, int h_tiles, int v_tiles, std:
void save_as_jpg(av::frame const & frame, std::string const & filename){ void save_as_jpg(av::frame const & frame, std::string const & filename){
const auto pix_fmt = AV_PIX_FMT_YUVJ444P; const auto pix_fmt = AV_PIX_FMT_YUVJ444P;
const auto codec_id= AV_CODEC_ID_MJPEG;
// Convert std::vector<uint8_t, av::allocator<uint8_t>> data(make_u(avpicture_get_size(pix_fmt, frame->width,
int tile_width = 800; frame->height)), 0);
int tile_height = 600;
int h_tiles = 8;
int v_tiles = 6;
std::vector<uint8_t, av::allocator<uint8_t>> data(make_u(avpicture_get_size(pix_fmt, h_tiles * tile_width, v_tiles * tile_height)), 0);
av::frame converted_frame = av::frame_alloc(); av::frame converted_frame = av::frame_alloc();
avpicture_fill(reinterpret_cast<AVPicture*>(converted_frame.get()), data.data(), pix_fmt, h_tiles * tile_width, v_tiles * tile_height); avpicture_fill(reinterpret_cast<AVPicture*>(converted_frame.get()), data.data(), pix_fmt, frame->width, frame->height);
converted_frame->width = h_tiles * tile_width; converted_frame->width = frame->width;
converted_frame->height = v_tiles * tile_height; converted_frame->height = frame->height;
converted_frame->format = pix_fmt; converted_frame->format = pix_fmt;
auto const sws_context = sws_getContext(frame->width, frame->height, av::get_format(frame), tile_width, tile_height, av::get_format(converted_frame), 0, nullptr, nullptr, nullptr); {
if(!sws_context) throw std::runtime_error("boem sws context"); auto sws_context = sws::create_context(frame, converted_frame);
sws::scale(sws_context, frame, converted_frame);
av::frame cropped_frame = av::frame_clone(converted_frame);
for(int r = 0; r < v_tiles; ++r) {
for(int c = 0; c < h_tiles; ++c){
av_picture_crop(reinterpret_cast<AVPicture*>(cropped_frame.get()), reinterpret_cast<AVPicture*>(converted_frame.get()), av::get_format(converted_frame), r * tile_height, c * tile_width);
sws_scale (sws_context, {frame->data}, {frame->linesize}, 0, frame->height, {cropped_frame->data}, {cropped_frame->linesize});
}
} }
sws_freeContext(sws_context); encode_as_jpg(converted_frame, filename);
}
// Encode
auto const codec = avcodec_find_encoder(codec_id);
if(!codec) throw av::error("Could not find codec");
auto codec_ctx = std::unique_ptr<AVCodecContext, av::deleter<AVCodecContext>>(avcodec_alloc_context3(codec), [](auto x){ avcodec_free_context(&x); }); void encode_as_jpg(const av::frame& frame, const std::string& filename){
if(!codec_ctx) throw av::error("Could not allocate codec context"); auto const codec_id= AV_CODEC_ID_MJPEG;
const auto pix_fmt = av::get_format(frame);
const auto codec = av::find_encoder(codec_id);
auto codec_ctx = av::context_alloc(codec);
codec_ctx->pix_fmt = pix_fmt; codec_ctx->pix_fmt = pix_fmt;
codec_ctx->width = converted_frame->width; codec_ctx->width = frame->width;
codec_ctx->height = converted_frame->height; codec_ctx->height = frame->height;
codec_ctx->time_base = av_make_q(1, 1); codec_ctx->time_base = av_make_q(1, 1);
auto const opened_codec = av::codec_open(codec_ctx.get(), codec, nullptr);
auto const buffer_size = avpicture_get_size(pix_fmt, codec_ctx->width, codec_ctx->height); const auto opened_codec = av::codec_open(codec_ctx, codec, nullptr);
const auto buffer_size = avpicture_get_size(pix_fmt, codec_ctx->width, codec_ctx->height);
std::vector<uint8_t> buffer(make_u(buffer_size), 0); std::vector<uint8_t> buffer(make_u(buffer_size), 0);
auto const output_size = avcodec_encode_video(codec_ctx.get(), buffer.data(), buffer_size, converted_frame.get()); const auto output_size = avcodec_encode_video(codec_ctx.get(), buffer.data(), buffer_size, frame.get());
assert(output_size <= buffer_size); assert(output_size <= buffer_size);
auto const file = fopen(filename.c_str(), "wb"); std::ofstream file(filename);
fwrite(buffer.data(), 1, make_u(output_size), file); file.write(reinterpret_cast<char*>(buffer.data()), output_size);
fclose(file);
} }

11
lib/image_io.hpp

@ -21,9 +21,6 @@ struct raw_rgb_image {
AVPixelFormat format() const; AVPixelFormat format() const;
}; };
// dumps image in ppm format
void save_as_ppm(raw_rgb_image const & image, std::string const & filename);
// opens an image in its own format // opens an image in its own format
av::frame open_image(std::string const & filename); av::frame open_image(std::string const & filename);
@ -35,13 +32,11 @@ av::frame crop_to_square(av::frame && frame);
// converts and resizes // converts and resizes
raw_rgb_image to_raw_rgb_image(av::frame const & frame, int new_width, int new_height); raw_rgb_image to_raw_rgb_image(av::frame const & frame, int new_width, int new_height);
// Legacy
inline raw_rgb_image open_as_rgb(const std::string &filename){
return to_raw_rgb_image(crop_to_square(open_image(filename)), 512, 512);
}
// apply function to every tile, fun :: Column, Row, Image -> Void // apply function to every tile, fun :: Column, Row, Image -> Void
void apply_to_tiles(std::string const & filename, int h_tiles, int v_tiles, std::function<void(int, int, av::frame const &)> fun); void apply_to_tiles(std::string const & filename, int h_tiles, int v_tiles, std::function<void(int, int, av::frame const &)> fun);
// does what you think it does // does what you think it does
void save_as_jpg(av::frame const & frame, std::string const & filename); void save_as_jpg(av::frame const & frame, std::string const & filename);
// encodes an av::frame with yuv pixelformat (is used by save_as_jpg()).
void encode_as_jpg(av::frame const & frame, std::string const & filename);

45
lib/read_database.hpp

@ -1,4 +1,43 @@
#ifndef READ_DATABASE_HPP #pragma once
#define READ_DATABASE_HPP
#endif // READ_DATABASE_HPP #include <database.hpp>
#include <utilities.hpp>
#include <boost/archive/binary_iarchive.hpp>
#include <boost/archive/binary_oarchive.hpp>
#include <boost/filesystem.hpp>
#include <iostream>
#include <fstream>
#include <string>
template <typename T>
auto read_database(std::string const & database_directory, bool output_files = false){
namespace fs = boost::filesystem;
namespace ar = boost::archive;
image_database<T> db;
auto const database_file = database_directory + "-" + db.fingerprint_name() + ".db";
if (!boost::filesystem::exists(database_file)){
fs::path const directory(database_directory);
fs::directory_iterator eod;
for(fs::directory_iterator it(directory); it != eod; ++it){
auto const path = it->path();
auto const ext = to_lower(path.extension().string());
if(ext != ".png" && ext != ".jpg" && ext != ".jpeg" && ext != ".gif") continue;
if(output_files) std::cout << path << std::endl;
db.add(path.string());
}
std::ofstream file(database_file);
ar::binary_oarchive archive(file);
archive << db;
} else {
std::ifstream file(database_file);
ar::binary_iarchive archive(file);
archive >> db;
}
return db;
}

46
lib/utilities.hpp

@ -1,20 +1,10 @@
#pragma once #pragma once
#include <string> #include <algorithm>
#include <cassert>
#include <chrono> #include <chrono>
#include <vector>
#include <iostream> #include <iostream>
#include <cassert> #include <string>
template <typename Int>
bool is_pow_of_two(Int n){
return n && !(n & (n - 1));
}
template <typename Int>
bool is_even(Int n){
return (n & 1) == 0;
}
// Used to silence warnings, will assert in debug build // Used to silence warnings, will assert in debug build
inline unsigned int make_u(int x){ inline unsigned int make_u(int x){
@ -22,25 +12,6 @@ inline unsigned int make_u(int x){
return static_cast<unsigned int>(x); return static_cast<unsigned int>(x);
} }
// calculates integer 2-log such that:
// 2^(two_log(x)) >= x > 2^(two_log(x) - 1)
inline unsigned int two_log(unsigned int x){
if(x <= 1) return 0;
return 8*sizeof(unsigned int) - unsigned(__builtin_clz(x-1));
}
// calculates 2^x (by squaring)
inline unsigned int pow_two(unsigned int x){
unsigned int base = 2;
unsigned int y = 1;
while(x){
if(x & 1) y *= base;
x >>= 1;
base *= base;
}
return y;
}
inline uint8_t to_uint8_t(double x){ inline uint8_t to_uint8_t(double x){
if(x >= 1) return 255; if(x >= 1) return 255;
if(x <= 0) return 0; if(x <= 0) return 0;
@ -70,14 +41,9 @@ inline std::string field(std::string const & str){
return str + ":" + std::string(add, ' ') + "\t"; return str + ":" + std::string(add, ' ') + "\t";
} }
// Prints a vector with brackets and commas inline std::string to_lower(std::string in){
// Does not work recursively! std::transform(in.begin(), in.end(), in.begin(), ::tolower);
template <typename T> return in;
void print_vec(std::vector<T> const & v){
auto it = v.begin(), end = v.end();
std::cout << "{" << *it++;
while(it != end) std::cout << ", " << *it++;
std::cout << "}\n";
} }
// RAII struct for timing // RAII struct for timing

3
lib/wvlt/wavelet.hpp

@ -0,0 +1,3 @@
#pragma once
#include "wavelet_2.hpp"

109
lib/wvlt/wavelet_2.hpp

@ -0,0 +1,109 @@
#pragma once
#include <cassert>
#include "wavelet_utilities.hpp"
#include "wavelet_constants.hpp"
/* Rewrite of the basic functions
* This will make the adaption for the parallel case easier,
* because we can explicitly pass the two elements which are out of range
* (these are normally wrap-around values)
*
* These are also faster (testcase: size = 8, stride = 1, iterations = 100000)
* V2 0.00377901
* V1 0.0345114
*
* But also less abstract (which can be both a good thing and bad thing)
*
* wavelet function does not shuffle!
*/
namespace wvlt{
inline namespace V2 {
inline double inner_product(double* x, double const* coef, unsigned int stride){
return x[0] * coef[0] + x[stride] * coef[1] + x[2*stride] * coef[2] + x[3*stride] * coef[3];
}
// will calculate part of wavelete transform (in place!)
// size is size of vector x (so x[size-1] is valid)
// does not calculate "last two" elements (it does not assume periodicity)
// calculates size/stride - 2 elements of the output
inline void wavelet_mul_base(double* x, unsigned int size, unsigned int stride){
assert(x && is_even(size) && is_pow_of_two(stride) && 4*stride <= size);
for(unsigned int i = 0; i < size - 2*stride; i += 2*stride){
double y1 = inner_product(x + i, evn_coef, stride);
double y2 = inner_product(x + i, odd_coef, stride);
x[i] = y1;
x[i+stride] = y2;
}
}
// x1 and x2 are next elements, or wrap around
// calculates size/stride elements of the output
inline void wavelet_mul(double* x, double x1, double x2, unsigned int size, unsigned int stride){
assert(x && is_even(size) && is_pow_of_two(stride) && 2*stride <= size);
if(4*stride <= size)
wavelet_mul_base(x, size, stride);
unsigned int i = size - 2*stride;
double y1 = x[i] * evn_coef[0] + x[i+stride] * evn_coef[1] + x1 * evn_coef[2] + x2 * evn_coef[3];
double y2 = x[i] * odd_coef[0] + x[i+stride] * odd_coef[1] + x1 * odd_coef[2] + x2 * odd_coef[3];
x[i] = y1;
x[i+stride] = y2;
}
// will overwrite x, x2 and x1 are previous elements, or wrap around
// size is size of vector x (so x[size-1] is valid)
inline void wavelet_inv(double* x, double x1, double x2, unsigned int size, unsigned int stride){
assert(x && is_even(size) && is_pow_of_two(stride) && 4*stride <= size);
for(unsigned int i = size - 2*stride; i >= 2*stride; i -= 2*stride){
double y1 = inner_product(x + i - 2*stride, evn_coef_inv, stride);
double y2 = inner_product(x + i - 2*stride, odd_coef_inv, stride);
x[i] = y1;
x[i+stride] = y2;
}
unsigned int i = 0;
double y1 = x2 * evn_coef_inv[0] + x1 * evn_coef_inv[1] + x[i] * evn_coef_inv[2] + x[i+stride] * evn_coef_inv[3];
double y2 = x2 * odd_coef_inv[0] + x1 * odd_coef_inv[1] + x[i] * odd_coef_inv[2] + x[i+stride] * odd_coef_inv[3];
x[i] = y1;
x[i+stride] = y2;
}
// size indicates number of elements to process (so this is different from above!)
inline void wavelet(double* x, unsigned int size, unsigned int stride){
assert(x && is_pow_of_two(size) && size >= 4);
auto full_size = stride*size;
for(unsigned int i = 1; i <= size / 4; i <<= 1){
auto j = stride * i;
wavelet_mul(x, x[0], x[j], full_size, j);
}
}
inline void wavelet_2D(double* in, unsigned int width, unsigned int height){
for(unsigned int y = 0; y < height; ++y)
wavelet(in + y*width, width, 1);
for(unsigned int x = 0; x < width; ++x)
wavelet(in + x, height, width);
}
// size indicates number of elements to process (so this is different from above!)
inline void unwavelet(double* x, unsigned int size, unsigned int stride){
assert(x && is_pow_of_two(size) && size >= 4);
auto full_size = stride*size;
for(unsigned int i = size / 4; i >= 1; i >>= 1){
auto j = stride * i;
wavelet_inv(x, x[full_size-j], x[full_size-2*j], full_size, j);
}
}
inline void unwavelet_2D(double* in, unsigned int width, unsigned int height){
for(unsigned int x = 0; x < width; ++x)
unwavelet(in + x, height, width);
for(unsigned int y = 0; y < height; ++y)
unwavelet(in + y*width, width, 1);
}
}
}

37
lib/wvlt/wavelet_constants.hpp

@ -0,0 +1,37 @@
#pragma once
#include <cmath>
namespace wvlt {
// first row of the matrix Wn
static double const evn_coef[] = {
(1.0 + std::sqrt(3.0))/(std::sqrt(32.0)),
(3.0 + std::sqrt(3.0))/(std::sqrt(32.0)),
(3.0 - std::sqrt(3.0))/(std::sqrt(32.0)),
(1.0 - std::sqrt(3.0))/(std::sqrt(32.0))
};
// second row of the matrix Wn
static double const odd_coef[] = {
evn_coef[3],
-evn_coef[2],
evn_coef[1],
-evn_coef[0]
};
// first (shifted) row of the matrix Wn^-1
static double const evn_coef_inv[] = {
evn_coef[2],
evn_coef[1],
evn_coef[0],
evn_coef[3]
};
// second (shifted) row of the matrix Wn^-1
static double const odd_coef_inv[] = {
evn_coef[3],
-evn_coef[0],
evn_coef[1],
-evn_coef[2]
};
}

19
lib/wvlt/wavelet_utilities.hpp

@ -0,0 +1,19 @@
#pragma once
template <typename Int>
bool is_pow_of_two(Int n){
return n && !(n & (n - 1));
}
template <typename Int>
bool is_even(Int n){
return (n & 1) == 0;
}
// calculates integer 2-log such that:
// 2^(two_log(x)) >= x > 2^(two_log(x) - 1)
inline unsigned int two_log(unsigned int x){
if(x <= 1) return 0;
return 8*sizeof(unsigned int) - unsigned(__builtin_clz(x-1));
}

6
src/compress.cpp

@ -5,6 +5,7 @@
*/ */
#include <image_io.hpp> #include <image_io.hpp>
#include <utilities.hpp>
#include <wvlt/wavelet.hpp> #include <wvlt/wavelet.hpp>
#include <boost/filesystem.hpp> #include <boost/filesystem.hpp>
@ -21,7 +22,7 @@ using namespace std;
int main(){ int main(){
av_register_all(); av_register_all();
auto image = open_as_rgb("image.jpg"); auto image = to_raw_rgb_image(crop_to_square(open_image("image.jpg")), 512, 512);
std::vector<double> vector(make_u(image.width() * image.height())); std::vector<double> vector(make_u(image.width() * image.height()));
@ -50,7 +51,6 @@ int main(){
} }
} }
// TODO: save as jpg save_as_jpg(image.frame, "output.jpg");
save_as_jpg(image.frame, "output.ppm");
} }

21
src/fingerprint_test.cpp

@ -1,21 +0,0 @@
#include <fingerprints.hpp>
#include <image_io.hpp>
extern "C" {
#include <libavformat/avformat.h>
}
#include <iostream>
using namespace std;
int main(){
av_register_all();
auto const image = open_image("test.jpg");
auto const x = rgb_wavelet_coefficients::calculate(image);
auto const y = rgb_wavelet_coefficients::pre_calculate(image);
cout << x << endl;
cout << x.distance_to(y) << endl;
}

58
src/main.cpp

@ -4,6 +4,7 @@
#include <mozaic.hpp> #include <mozaic.hpp>
#include <read_database.hpp> #include <read_database.hpp>
#include <utilities.hpp> #include <utilities.hpp>
#include <av/av.hpp>
#include <av/sws.hpp> #include <av/sws.hpp>
#include <boost/filesystem.hpp> #include <boost/filesystem.hpp>
@ -12,10 +13,9 @@ extern "C" {
#include <libavformat/avformat.h> #include <libavformat/avformat.h>
#include <libavcodec/avcodec.h> #include <libavcodec/avcodec.h>
#include <libavformat/avformat.h> #include <libavformat/avformat.h>
#include <libswscale/swscale.h>
} }
#include <algorithm> #include <fstream>
#include <iostream> #include <iostream>
#include <utility> #include <utility>
@ -24,7 +24,7 @@ static const int tile_height = 500;
using namespace std; using namespace std;
using Metric = downscale; using Metric = fingerprints::rgb;
using Database = image_database<Metric>; using Database = image_database<Metric>;
static auto calculate_all_distances(Database const & db, string const & filename, int h_tiles, int v_tiles){ static auto calculate_all_distances(Database const & db, string const & filename, int h_tiles, int v_tiles){
@ -41,51 +41,37 @@ static auto calculate_all_distances(Database const & db, string const & filename
template <typename Mozaiq> template <typename Mozaiq>
static void save_mozaic(Mozaiq const & mozaic, string filename){ static void save_mozaic(Mozaiq const & mozaic, string filename){
auto const pix_fmt = AV_PIX_FMT_YUVJ444P; auto const pix_fmt = AV_PIX_FMT_YUVJ444P;
auto const codec_id= AV_CODEC_ID_MJPEG;
auto const total_width = mozaic.h_tiles * tile_width; auto const total_width = mozaic.h_tiles * tile_width;
auto const total_height = mozaic.v_tiles * tile_height; auto const total_height = mozaic.v_tiles * tile_height;
// Create output frame // Create output frame
std::vector<uint8_t, av::allocator<uint8_t>> data(make_u(avpicture_get_size(pix_fmt, total_width, total_height)), 0); const auto frame_data = [=]{
const av::frame frame = av::frame_alloc(); std::vector<uint8_t, av::allocator<uint8_t>> data(make_u(avpicture_get_size(pix_fmt, total_width, total_height)), 0);
avpicture_fill(reinterpret_cast<AVPicture*>(frame.get()), data.data(), pix_fmt, total_width, total_height); auto frame = av::frame_alloc();
frame->width = total_width; avpicture_fill(reinterpret_cast<AVPicture*>(frame.get()), data.data(), pix_fmt, total_width, total_height);
frame->height = total_height; frame->width = total_width;
frame->format = pix_fmt; frame->height = total_height;
frame->format = pix_fmt;
return std::make_pair(std::move(frame), std::move(data));
}();
const auto & frame = frame_data.first;
// For each tile: get the part, copy input to it // For each tile: get the part, copy input to it
av::frame frame_part = av::frame_clone(frame);
frame_part->width = tile_width;
frame_part->height = tile_height;
for(int r = 0; r < mozaic.v_tiles; ++r) { for(int r = 0; r < mozaic.v_tiles; ++r) {
for(int c = 0; c < mozaic.h_tiles; ++c){ for(int c = 0; c < mozaic.h_tiles; ++c){
auto frame_part = av::crop(frame, c * tile_width, r * tile_height, tile_width, tile_height); av_picture_crop(reinterpret_cast<AVPicture*>(frame_part.get()), reinterpret_cast<AVPicture const*>(frame.get()), av::get_format(frame), r * tile_height, c * tile_width);
auto input = crop_to_square(open_image(mozaic[r][c])); auto const input = crop_to_square(open_image(mozaic[r][c]));
auto context = sws::create_context(input, frame_part); auto context = sws::create_context(input, frame_part);
sws::scale(context, input, frame_part); sws::scale(context, input, frame_part);
} }
} }
// Encode encode_as_jpg(frame, filename);
auto codec = avcodec_find_encoder(codec_id);
if(!codec) throw av::error("Could not find codec");
auto codec_ctx = std::unique_ptr<AVCodecContext, av::deleter<AVCodecContext>>(avcodec_alloc_context3(codec), [](auto x){ avcodec_free_context(&x); });
if(!codec_ctx) throw av::error("Could not allocate codec context");
codec_ctx->pix_fmt = pix_fmt;
codec_ctx->width = frame->width;
codec_ctx->height = frame->height;
codec_ctx->time_base = av_make_q(1, 1);
auto opened_codec = av::codec_open(codec_ctx.get(), codec, nullptr);
auto const buffer_size = avpicture_get_size(pix_fmt, codec_ctx->width, codec_ctx->height);
std::vector<uint8_t> buffer(make_u(buffer_size), 0);
auto const output_size = avcodec_encode_video(codec_ctx.get(), buffer.data(), buffer_size, frame.get());
assert(output_size <= buffer_size);
auto file = fopen(filename.c_str(), "wb");
fwrite(buffer.data(), 1, make_u(output_size), file);
fclose(file);
} }
int main(){ int main(){
@ -93,9 +79,9 @@ int main(){
av_log_set_level(AV_LOG_QUIET); av_log_set_level(AV_LOG_QUIET);
// TODO: use boost::program_options // TODO: use boost::program_options
string const database_directory = "vakantie"; string const database_directory = "basbram";
string const filename = "vakantie.jpg"; string const filename = "basbram.jpg";
string const output = "output/vakantie.jpg"; string const output = "output/basbram.jpg";
int const h_tiles = 4*4; int const h_tiles = 4*4;
int const v_tiles = 3*4; int const v_tiles = 3*4;

Loading…
Cancel
Save