\item[MC1] All finite limits and colimits exist in $\cat{C}$.
\item[MC2] If $f$, $g$ and $fg$ are maps such that two of them are weak equivalences, then so it the third. This is called the \emph{2-out-of-3} property.
\item[MC3] All three classes of maps are closed under retracts\todo{Either draw the diagram or define a retract earlier}.
\item[MC4] In any commuting square as follows where $i \in\Cof$ and $p \in\Fib$,
\begin{center}
\begin{tikzpicture}
\matrix (m) [matrix of math nodes]{
A & X \\
B & Y \\
};
\path[->] (m-1-1) edge (m-1-2);
\path[->] (m-2-1) edge (m-2-2);
\path[->] (m-1-1) edge node[auto] {$i$} (m-2-1);
\path[->] (m-1-2) edge node[auto] {$p$} (m-2-2);
\end{tikzpicture}
\end{center}
there exist a lift $h: B \to Y$ if either
\begin{itemize}
\item[a)]$i \in\W$ or
\item[b)]$p \in\W$.
\end{itemize}
\item[MC5] Any map $f : A \to B$ can be factored in two ways:
\begin{itemize}
\item[a)] as $f = pi$, where $i \in\Cof\cap\W$ and $p \in\Fib$ and
\item[b)] as $f = pi$, where $i \in\Cof$ and $p \in\Fib\cap\W$.
\end{itemize}
\end{itemize}
\end{definition}
\begin{notation} For brevity
\begin{itemize}
\item we write $f: A \fib B$ when $f$ is a fibration,
\item we write $f: A \cof B$ when $f$ is a cofibration and
\item we write $f: A \we B$ when $f$ is a weak equivalence.
\end{itemize}
\end{notation}
\begin{definition}
An object $A$ in a model category $\cat{C}$ will be called \emph{fibrant} if $A \to\cat{1}$ is a fibration and \emph{cofibrant} if $\cat{0}\to A$ is a cofibration.
Note that axiom [MC5a] allows us to replace any object $X$ with a weakly equivalent fibrant object $X^{fib}$ and by [MC5b] by a weakly equivalent cofibrant object $X^{cof}$, as seen in the following diagram:
In order to relate model categories and their associated homotopy categories we need a notion of maps between them. We want the maps such that they induce maps on the homotopy categories.