diff --git a/thesis/chapters/Introduction.tex b/thesis/chapters/Introduction.tex index 1360c47..32fdb90 100644 --- a/thesis/chapters/Introduction.tex +++ b/thesis/chapters/Introduction.tex @@ -11,7 +11,7 @@ We assume the reader is familiar with category theory, basics from algebraic top \item $\k$ will denote an arbitrary commutative ring (or field, if indicated at the start of a section). Modules, tensor products, \dots are understood as $\k$-modules, tensor products over $\k$, \dots. If ambiguity can occur notation will be explicit. \item $\cat{C}$ will denote an arbitrary category. \item $\cat{0}$ (resp. $\cat{1}$) will denote the initial (resp. final) objects in a category $\cat{C}$. - \item $\Hom_\cat{C}(A, B)$ will denote the set of maps from $A$ to $B$ in the category $\cat{C}$. The subscript $\cat{C}$ is occasionally left out if the category is clear from the context. + \item $\Hom_{\cat{C}}(A, B)$ will denote the set of maps from $A$ to $B$ in the category $\cat{C}$. The subscript $\cat{C}$ is occasionally left out if the category is clear from the context. \end{itemize} Some categories: diff --git a/thesis/notes/Polynomial_Forms.tex b/thesis/notes/Polynomial_Forms.tex index 9ca4133..041aa5d 100644 --- a/thesis/notes/Polynomial_Forms.tex +++ b/thesis/notes/Polynomial_Forms.tex @@ -9,8 +9,12 @@ Given a category $\cat{C}$ and a functor $F: \DELTA \to \cat{C}$, then define th A simplicial map $X \to Y$ induces a map of the diagrams of which we take colimits. Applying $F$ on these diagrams, make it clear that $F_!$ is functorial. Secondly we see readily that $F^\ast$ is functorial. By using the definition of colimit and the Yoneda lemma (Y) we can prove that $F_!$ is left adjoint to $F^\ast$: \begin{align*} - \Hom_\cat{C}(F_!(X), Y) &\iso \Hom_\cat{C}(\colim_{\Delta[n] \to X} F[n], Y) \iso \lim_{\Delta[n] \to X} \Hom_\cat{C}(F[n], Y) \iso \lim_{\Delta[n] \to X} F^\ast(Y)_n \\ - &\stackrel{\text{Y}}{\iso} \lim_{\Delta[n] \to X} \Hom_\sSet(\Delta[n], F^\ast(Y)) \iso \Hom_\sSet(\colim_{\Delta[n] \to X} \Delta[n], F^\ast(Y)) \\ + \Hom_\cat{C}(F_!(X), Y) + &\iso \Hom_\cat{C}(\colim_{\Delta[n] \to X} F[n], Y) \\ + &\iso \lim_{\Delta[n] \to X} \Hom_\cat{C}(F[n], Y) \\ + &\iso \lim_{\Delta[n] \to X} F^\ast(Y)_n \\ + &\stackrel{\text{Y}}{\iso} \lim_{\Delta[n] \to X} \Hom_\sSet(\Delta[n], F^\ast(Y)) \\ + &\iso \Hom_\sSet(\colim_{\Delta[n] \to X} \Delta[n], F^\ast(Y)) \\ &\iso \Hom_\sSet(X, F^\ast(Y)). \end{align*} @@ -28,8 +32,11 @@ In our case where $F = \Apl$ and $\cat{C} = \CDGA_\k$ we get: In our case we take the opposite category, so the definition of $A$ is in terms of a limit instead of colimit. This allows us to give a nicer description: \begin{align*} - A(X) &= \lim_{\Delta[n] \to X} \Apl_n \stackrel{Y}{\iso} \lim_{\Delta[n] \to X} \Hom_\sSet(\Delta[n], \Apl) \iso \Hom_\sSet(\colim_{\Delta[n] \to X}\Delta[n], \Apl) \\ - &= \Hom_\sSet(X, \Apl), + A(X) + &= \lim_{\Delta[n] \to X} \Apl_n + \stackrel{Y}{\iso} \lim_{\Delta[n] \to X} \Hom_\sSet(\Delta[n], \Apl) \\ + &\iso \Hom_\sSet(\colim_{\Delta[n] \to X}\Delta[n], \Apl) + = \Hom_\sSet(X, \Apl), \end{align*} where the addition, multiplication and differential are defined pointwise. Conclude that we have the following contravariant functors (which form an adjoint pair): @@ -65,15 +72,16 @@ $$ \oint_n(v)(x) = (-1)^\frac{k(k-1)}{2} \int_n x^\ast(v). $$ Note that $\oint_n(v): \Delta[n] \to \k$ is just a map, we can extend this linearly to chains on $\Delta[n]$ to obtain $\oint_n(v): \Z\Delta[n] \to \k$, in other words $\oint_n(v) \in C_n$. By linearity of $\int_n$ and $x^\ast$, we have a linear map $\oint_n: \Apl_n \to C_n$. Next we will show that $\oint = \{\oint_n\}_n$ is a simplicial map and that each $\oint_n$ is a chain map, in other words $\oint : \Apl \to C_n$ is a simplicial chain map (of complexes). Let $\sigma: \Delta[n] \to \Delta[k]$, and $\sigma^\ast: \Apl_k \to \Apl_n$ its induced map. We need to prove $\oint_n \circ \sigma^\ast = \sigma^\ast \circ \oint_k$. We show this as follows: -$$ \oint_n (\sigma^\ast v)(x) - = (-1)^\frac{l(l-1)}{2} \int_l x^\ast(\sigma^\ast(v)) - = (-1)^\frac{l(l-1)}{2} \int_l (\sigma \circ x)^\ast(v) - = \oint_k (v)(\sigma \circ x) - = (\oint_k (v) \circ \sigma) (x) - = \sigma^\ast (\oint_k(v)(x)) $$ +\begin{align*} + \oint_n (\sigma^\ast v)(x) + &= (-1)^\frac{l(l-1)}{2} \int_l x^\ast(\sigma^\ast(v)) \\ + &= (-1)^\frac{l(l-1)}{2} \int_l (\sigma \circ x)^\ast(v) \\ + &= \oint_k (v)(\sigma \circ x) \\ + &= (\oint_k (v) \circ \sigma) (x) = \sigma^\ast (\oint_k(v)(x)) +\end{align*} For it to be a chain map, we need to prove $d \circ \oint_n = \oint_n \circ d$. This is very similar to \emph{Stokes' theorem}. \todo{proof this} -We now proved that $\oint$ is indeed a simplicial chain map. Note that $\oint_n$ need not to preserve multiplication, so it fails to be a map of cochain algebras. However $\oint(1) = 1$ and so the induced map on homology sends the class of $1$ in $H(\Apl_n) = \k \dot [1]$ to the class of $1$ in $H(C_n) = \k \dot [1]$. We have proven the following lemma. +We now proved that $\oint$ is indeed a simplicial chain map. Note that $\oint_n$ need not to preserve multiplication, so it fails to be a map of cochain algebras. However $\oint(1) = 1$ and so the induced map on homology sends the class of $1$ in $H(\Apl_n) = \k \cdot [1]$ to the class of $1$ in $H(C_n) = \k \cdot [1]$. We have proven the following lemma. \Lemma{apl-c-quasi-iso}{ The map $\oint_n: \Apl_n \to C_n$ is a quasi isomorphism for all $n$. diff --git a/thesis/preamble.tex b/thesis/preamble.tex index 944f41a..41debba 100644 --- a/thesis/preamble.tex +++ b/thesis/preamble.tex @@ -1,23 +1,16 @@ % normally included with amsart -\usepackage{amsmath, amsthm} +% \usepackage{amsmath, amsthm} -% font with unicode support -\usepackage{fontspec} +% font with unicode support, does not work with classicthesis +% \usepackage{fontspec} % clickable tocs \usepackage{hyperref} -% use english -\usepackage{polyglossia} -\setmainlanguage[variant=british]{english} - % floating figures \usepackage{float} -% for appendices -% \usepackage[toc,page]{appendix} - % for multiple cites \usepackage{cite} @@ -204,4 +197,3 @@ \newcommand{\cdiagram}[1]{ \cdiagrambase{diagrams/#1} } - diff --git a/thesis/thesis.tex b/thesis/thesis.tex index 17ddad8..0d1032d 100644 --- a/thesis/thesis.tex +++ b/thesis/thesis.tex @@ -1,5 +1,12 @@ \documentclass[a4paper,12pt,footinclude=true,headinclude=true,oneside,dottedtoc]{scrbook} -\usepackage[parts,drafting,eulerchapternumbers,beramono,eulermath]{classicthesis} + +\usepackage{amsmath, amsthm} +\usepackage[T1]{fontenc} +% use english, does not work with classicthesis +% \usepackage{polyglossia} +% \setmainlanguage[variant=british]{english} + +\usepackage[parts,drafting,eulerchapternumbers]{classicthesis} \setcounter{tocdepth}{0} % parts, chapters \input{preamble}