Browse Source

First two pages of algebraic definitions

master
Joshua Moerman 11 years ago
commit
3c8b2a1fee
  1. 5
      .gitignore
  2. 62
      thesis/Definitions.tex
  3. 26
      thesis/Makefile
  4. 88
      thesis/preamble.tex
  5. 25
      thesis/references.bib
  6. 9
      thesis/style.tex
  7. 19
      thesis/thesis.tex

5
.gitignore

@ -0,0 +1,5 @@
.DS_Store
*.pdf
build

62
thesis/Definitions.tex

@ -0,0 +1,62 @@
\section{Definitions}
\label{sec:definitions}
\subsection{Graded algebra}
In this section $\k$ will be any commutative ring. We will recap some of the basic definitions of commutative algebra in a graded setting. By \emph{linear}, \emph{module}, \emph{tensor product}, \dots we always mean $\k$-linear, $\k$-module, tensor product over $\k$, \dots.
\begin{definition}
A \emph{graded module} $M$ is a family of modules $\{M_n\}_{n\in\Z}$. An element $x \in M_n$ is called a \emph{homogenous element} and said to be of \emph{degree $\deg{x} = n$}. We will often identify $M = \bigoplus_{n \in \Z} M_n$.
\end{definition}
For an arbitrary module $M$ we can consider the graded module $M[0]$ \emph{concentrated in degree $0$} defined by setting $M[0]_0 = M$ and $M[0]_n = 0$ for $i \neq 0$. If clear from the context we will denote this graded module by $M$. In particular $\k$ is a graded module concentrated in degree $0$.
\begin{definition}
A linear map $f: M \to N$ between graded modules is \emph{graded of degree $p$} if it respects the grading, i.e. $\restr{f}{M_n} : M_n \to N_{n+p}$.
\end{definition}
\begin{definition}
The graded maps $f: M \to N$ between graded modules can be arranged in a graded module by defining:
$$ \Hom{gr}{M}{N}_n = \{ f: M \to N \I f \text{ is graded of degree } n \}. $$
\end{definition}
Note that not all linear maps can be decomposed into a sum of graded maps. In other words $\Hom{gr}{M}{N} \subset \Hom{}{M}{N}$ might not be equal.
Recall that the tensor product of modules distributes over direct sums. So if $M = \bigoplus_{n \in \Z} M_n$ and $N = \bigoplus_{n \in \Z} N_n$, then
$$ M \tensor N \iso \bigoplus_{n \in Z} \bigoplus_{m \in Z} M_m \tensor N_n \iso \bigoplus_{n \in Z} \bigoplus_{i + j = n} M_i \tensor N_j. $$
This defines a natural grading on the tensor product.
\begin{definition}
The graded tensor product is defined as:
$$ (M \tensor N)_n = \bigoplus_{i + j = n} M_i \tensor N_j. $$
\end{definition}
The graded modules together with graded maps of degree $0$ form the category $\grMod{\k}$ of graded modules. Together with the tensor product and the ground ring, $(\grMod{\k}, \tensor, \k)$ is a monoidal category. This now dictates the definition of a graded algebra.
\begin{definition}
A \emph{graded algebra} consists of a graded module $A$ together with two graded maps of degree $0$:
$$ \mu: A \tensor A \to A \quad\text{ and }\quad \eta: k \to A $$
such that $\mu$ is associative and $\eta$ is a unit for $\mu$.
A graded map between two graded algebra will be called \emph{graded algebra map} if the map is compatible with the multiplication and unit.
\end{definition}
Again these objects form a category, denoted as $\grAlg{\k}$.
\begin{definition}
A graded algebra $A$ is \emph{commutative} if for all $x, y \in A$
$$ xy = (-1)^{\deg{x}\deg{y}}yx. $$
\end{definition}
\subsection{Differential graded algebra}
Now define differentials... and the categories $\cat{DGA}_\k, \cat{CGDA}_\k$.
Note that a monoidal object of differential graded modules is the same as a graded algebra with a differential.
Conclude with (co)chain complexes and (co)chain (co)algebras.
\subsection{Model categories}

26
thesis/Makefile

@ -0,0 +1,26 @@
.PHONY: thesis fast images
# We don want to pollute the root dir, so we use a build dir
# http://tex.stackexchange.com/questions/12686/how-do-i-run-bibtex-after-using-the-output-directory-flag-with-pdflatex-when-f
thesis:
mkdir -p build
cp references.bib build/
pdflatex -output-directory=build thesis.tex
cd build; bibtex thesis
pdflatex -output-directory=build thesis.tex
pdflatex -output-directory=build thesis.tex
cp build/thesis.pdf ./
fast:
mkdir -p build
pdflatex -output-directory=build thesis.tex
cp build/thesis.pdf ./
images:
mkdir -p build
pdflatex -output-directory=build images.tex
pdflatex -output-directory=build images.tex
scp build/images.pdf moerman@stitch.science.ru.nl:~/wvlt_images.pdf
ssh moerman@stitch.science.ru.nl 'pdf2svg wvlt_images.pdf wvlt_images.svg'
scp moerman@stitch.science.ru.nl:~/wvlt_images.svg ./images.svg

88
thesis/preamble.tex

@ -0,0 +1,88 @@
% clickable tocs
\usepackage{hyperref}
% floating figures
\usepackage{float}
\usepackage{listings}
\usepackage{tikz}
\usetikzlibrary{matrix, arrows, decorations}
\tikzset{node distance=2.5em, row sep=2.2em, column sep=2.7em, auto}
\usepackage{graphicx}
\graphicspath{ {./images/} }
\usepackage{caption}
\usepackage{subcaption}
% Matrices have a upper bound for its size
\setcounter{MaxMatrixCols}{20}
% Remove trailing `contents` after toc
\renewcommand{\contentsname}{}
% for the fib arrow
\usepackage{amssymb}
% mathbb for lowercase
\usepackage{bbm}
% for slanted text/symbols
\usepackage{slantsc}
\DeclareMathOperator*{\colim}{colim}
\DeclareMathOperator*{\tensor}{\otimes}
\DeclareMathOperator*{\bigtensor}{\bigotimes}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Np}{{\mathbb{N}^{>0}}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\R}{\mathbb{R}}
\renewcommand{\k}{\mathbbm{k}}
\newcommand{\cat}[1]{\mathbf{#1}}
\newcommand{\Set}{\cat{Set}}
\newcommand{\sSet}{\cat{sSet}}
\newcommand{\Top}{\cat{Top}}
\newcommand{\DELTA}{\cat{\Delta}}
\newcommand{\grMod}[1]{\cat{gr-{#1}Mod}}
\newcommand{\grAlg}[1]{\cat{gr-{#1}Alg}}
\newcommand{\Hom}[3]{\mathbf{Hom}_{#1}(#2, #3)}
\newcommand{\id}{\mathbf{id}}
\newcommand{\I}{\,\mid\,}
\newcommand{\del}{\partial} % boundary
\newcommand{\iso}{\cong} % isomorphic
\newcommand{\eq}{\sim} % homotopic
\newcommand{\tot}[1]{\xrightarrow{\,\,{#1}\,\,}} % arrow with name
\newcommand{\mapstot}[1]{\xmapsto{\,\,{#1}\,\,}} % mapsto with name
\newcommand{\cof}{\hookrightarrow} % cofibration
\newcommand{\fib}{\twoheadrightarrow} % fibration
\newcommand{\we}{\tot{\simeq}} % weak equivalence
\renewcommand{\deg}[1]{|{#1}|}
\newcommand\restr[2]{{% we make the whole thing an ordinary symbol
\left.\kern-\nulldelimiterspace % automatically resize the bar with \right
#1 % the function
\vphantom{\big|} % pretend it's a little taller at normal size
\right|_{#2} % this is the delimiter
}}
\newcommand{\todo}[1]{
\addcontentsline{tdo}{todo}{\protect{#1}}
$\ast$ \marginpar{\tiny $\ast$ #1}
}
\theoremstyle{plain}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{corollary}[theorem]{Corollary}
\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\newcommand*{\thead}[1]{\multicolumn{1}{c}{\bfseries #1}}

25
thesis/references.bib

@ -0,0 +1,25 @@
@book{felix,
title={Rational homotopy theory},
author={F{\'e}lix, Yves and Halperin, Steve and Thomas, Jean-Claude},
volume={205},
year={2001},
publisher={Springer}
}
@book{bous,
title={On PL de Rham theory and rational homotopy type},
author={Bousfield, Aldridge Knight and Gugenheim, Victor KAM},
volume={179},
year={1976},
publisher={American Mathematical Soc.}
}
@article{hess,
title={Rational homotopy theory: a brief introduction},
author={Hess, Kathryn and others},
journal={Contemporary Mathematics},
volume={436},
pages={175},
year={2007},
publisher={Providence, RI; American Mathematical Society; 1999}
}

9
thesis/style.tex

@ -0,0 +1,9 @@
% lesser margins
\usepackage{geometry}
\geometry{a4paper}
\geometry{twoside=false}
% no indent, but vertical spacing
\usepackage[parfill]{parskip}
\setlength{\marginparwidth}{2cm}

19
thesis/thesis.tex

@ -0,0 +1,19 @@
\documentclass[a4paper, 11pt]{amsart}
\input{style}
\input{preamble}
\title{Rational Homotopy Theory}
\author{Joshua Moerman}
\begin{document}
\maketitle
\input{Definitions} \newpage
\nocite{*}
\bibliographystyle{alpha}
\bibliography{references}
\end{document}