First two pages of algebraic definitions
This commit is contained in:
commit
3c8b2a1fee
7 changed files with 234 additions and 0 deletions
5
.gitignore
vendored
Normal file
5
.gitignore
vendored
Normal file
|
@ -0,0 +1,5 @@
|
|||
.DS_Store
|
||||
|
||||
*.pdf
|
||||
build
|
||||
|
62
thesis/Definitions.tex
Normal file
62
thesis/Definitions.tex
Normal file
|
@ -0,0 +1,62 @@
|
|||
|
||||
\section{Definitions}
|
||||
\label{sec:definitions}
|
||||
|
||||
\subsection{Graded algebra}
|
||||
|
||||
In this section $\k$ will be any commutative ring. We will recap some of the basic definitions of commutative algebra in a graded setting. By \emph{linear}, \emph{module}, \emph{tensor product}, \dots we always mean $\k$-linear, $\k$-module, tensor product over $\k$, \dots.
|
||||
|
||||
\begin{definition}
|
||||
A \emph{graded module} $M$ is a family of modules $\{M_n\}_{n\in\Z}$. An element $x \in M_n$ is called a \emph{homogenous element} and said to be of \emph{degree $\deg{x} = n$}. We will often identify $M = \bigoplus_{n \in \Z} M_n$.
|
||||
\end{definition}
|
||||
|
||||
For an arbitrary module $M$ we can consider the graded module $M[0]$ \emph{concentrated in degree $0$} defined by setting $M[0]_0 = M$ and $M[0]_n = 0$ for $i \neq 0$. If clear from the context we will denote this graded module by $M$. In particular $\k$ is a graded module concentrated in degree $0$.
|
||||
|
||||
\begin{definition}
|
||||
A linear map $f: M \to N$ between graded modules is \emph{graded of degree $p$} if it respects the grading, i.e. $\restr{f}{M_n} : M_n \to N_{n+p}$.
|
||||
\end{definition}
|
||||
|
||||
\begin{definition}
|
||||
The graded maps $f: M \to N$ between graded modules can be arranged in a graded module by defining:
|
||||
$$ \Hom{gr}{M}{N}_n = \{ f: M \to N \I f \text{ is graded of degree } n \}. $$
|
||||
\end{definition}
|
||||
|
||||
Note that not all linear maps can be decomposed into a sum of graded maps. In other words $\Hom{gr}{M}{N} \subset \Hom{}{M}{N}$ might not be equal.
|
||||
|
||||
Recall that the tensor product of modules distributes over direct sums. So if $M = \bigoplus_{n \in \Z} M_n$ and $N = \bigoplus_{n \in \Z} N_n$, then
|
||||
$$ M \tensor N \iso \bigoplus_{n \in Z} \bigoplus_{m \in Z} M_m \tensor N_n \iso \bigoplus_{n \in Z} \bigoplus_{i + j = n} M_i \tensor N_j. $$
|
||||
This defines a natural grading on the tensor product.
|
||||
|
||||
\begin{definition}
|
||||
The graded tensor product is defined as:
|
||||
$$ (M \tensor N)_n = \bigoplus_{i + j = n} M_i \tensor N_j. $$
|
||||
\end{definition}
|
||||
|
||||
The graded modules together with graded maps of degree $0$ form the category $\grMod{\k}$ of graded modules. Together with the tensor product and the ground ring, $(\grMod{\k}, \tensor, \k)$ is a monoidal category. This now dictates the definition of a graded algebra.
|
||||
|
||||
\begin{definition}
|
||||
A \emph{graded algebra} consists of a graded module $A$ together with two graded maps of degree $0$:
|
||||
$$ \mu: A \tensor A \to A \quad\text{ and }\quad \eta: k \to A $$
|
||||
such that $\mu$ is associative and $\eta$ is a unit for $\mu$.
|
||||
|
||||
A graded map between two graded algebra will be called \emph{graded algebra map} if the map is compatible with the multiplication and unit.
|
||||
\end{definition}
|
||||
|
||||
Again these objects form a category, denoted as $\grAlg{\k}$.
|
||||
|
||||
\begin{definition}
|
||||
A graded algebra $A$ is \emph{commutative} if for all $x, y \in A$
|
||||
$$ xy = (-1)^{\deg{x}\deg{y}}yx. $$
|
||||
\end{definition}
|
||||
|
||||
|
||||
\subsection{Differential graded algebra}
|
||||
Now define differentials... and the categories $\cat{DGA}_\k, \cat{CGDA}_\k$.
|
||||
|
||||
Note that a monoidal object of differential graded modules is the same as a graded algebra with a differential.
|
||||
|
||||
Conclude with (co)chain complexes and (co)chain (co)algebras.
|
||||
|
||||
|
||||
\subsection{Model categories}
|
||||
|
26
thesis/Makefile
Normal file
26
thesis/Makefile
Normal file
|
@ -0,0 +1,26 @@
|
|||
|
||||
.PHONY: thesis fast images
|
||||
|
||||
# We don want to pollute the root dir, so we use a build dir
|
||||
# http://tex.stackexchange.com/questions/12686/how-do-i-run-bibtex-after-using-the-output-directory-flag-with-pdflatex-when-f
|
||||
thesis:
|
||||
mkdir -p build
|
||||
cp references.bib build/
|
||||
pdflatex -output-directory=build thesis.tex
|
||||
cd build; bibtex thesis
|
||||
pdflatex -output-directory=build thesis.tex
|
||||
pdflatex -output-directory=build thesis.tex
|
||||
cp build/thesis.pdf ./
|
||||
|
||||
fast:
|
||||
mkdir -p build
|
||||
pdflatex -output-directory=build thesis.tex
|
||||
cp build/thesis.pdf ./
|
||||
|
||||
images:
|
||||
mkdir -p build
|
||||
pdflatex -output-directory=build images.tex
|
||||
pdflatex -output-directory=build images.tex
|
||||
scp build/images.pdf moerman@stitch.science.ru.nl:~/wvlt_images.pdf
|
||||
ssh moerman@stitch.science.ru.nl 'pdf2svg wvlt_images.pdf wvlt_images.svg'
|
||||
scp moerman@stitch.science.ru.nl:~/wvlt_images.svg ./images.svg
|
88
thesis/preamble.tex
Normal file
88
thesis/preamble.tex
Normal file
|
@ -0,0 +1,88 @@
|
|||
|
||||
% clickable tocs
|
||||
\usepackage{hyperref}
|
||||
|
||||
% floating figures
|
||||
\usepackage{float}
|
||||
|
||||
\usepackage{listings}
|
||||
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{matrix, arrows, decorations}
|
||||
\tikzset{node distance=2.5em, row sep=2.2em, column sep=2.7em, auto}
|
||||
|
||||
\usepackage{graphicx}
|
||||
\graphicspath{ {./images/} }
|
||||
\usepackage{caption}
|
||||
\usepackage{subcaption}
|
||||
|
||||
% Matrices have a upper bound for its size
|
||||
\setcounter{MaxMatrixCols}{20}
|
||||
|
||||
% Remove trailing `contents` after toc
|
||||
\renewcommand{\contentsname}{}
|
||||
|
||||
% for the fib arrow
|
||||
\usepackage{amssymb}
|
||||
|
||||
% mathbb for lowercase
|
||||
\usepackage{bbm}
|
||||
|
||||
% for slanted text/symbols
|
||||
\usepackage{slantsc}
|
||||
|
||||
\DeclareMathOperator*{\colim}{colim}
|
||||
\DeclareMathOperator*{\tensor}{\otimes}
|
||||
\DeclareMathOperator*{\bigtensor}{\bigotimes}
|
||||
|
||||
\newcommand{\N}{\mathbb{N}}
|
||||
\newcommand{\Np}{{\mathbb{N}^{>0}}}
|
||||
\newcommand{\Z}{\mathbb{Z}}
|
||||
\newcommand{\R}{\mathbb{R}}
|
||||
\renewcommand{\k}{\mathbbm{k}}
|
||||
|
||||
\newcommand{\cat}[1]{\mathbf{#1}}
|
||||
\newcommand{\Set}{\cat{Set}}
|
||||
\newcommand{\sSet}{\cat{sSet}}
|
||||
\newcommand{\Top}{\cat{Top}}
|
||||
\newcommand{\DELTA}{\cat{\Delta}}
|
||||
\newcommand{\grMod}[1]{\cat{gr-{#1}Mod}}
|
||||
\newcommand{\grAlg}[1]{\cat{gr-{#1}Alg}}
|
||||
|
||||
\newcommand{\Hom}[3]{\mathbf{Hom}_{#1}(#2, #3)}
|
||||
\newcommand{\id}{\mathbf{id}}
|
||||
|
||||
\newcommand{\I}{\,\mid\,}
|
||||
\newcommand{\del}{\partial} % boundary
|
||||
\newcommand{\iso}{\cong} % isomorphic
|
||||
\newcommand{\eq}{\sim} % homotopic
|
||||
\newcommand{\tot}[1]{\xrightarrow{\,\,{#1}\,\,}} % arrow with name
|
||||
\newcommand{\mapstot}[1]{\xmapsto{\,\,{#1}\,\,}} % mapsto with name
|
||||
\newcommand{\cof}{\hookrightarrow} % cofibration
|
||||
\newcommand{\fib}{\twoheadrightarrow} % fibration
|
||||
\newcommand{\we}{\tot{\simeq}} % weak equivalence
|
||||
\renewcommand{\deg}[1]{|{#1}|}
|
||||
|
||||
\newcommand\restr[2]{{% we make the whole thing an ordinary symbol
|
||||
\left.\kern-\nulldelimiterspace % automatically resize the bar with \right
|
||||
#1 % the function
|
||||
\vphantom{\big|} % pretend it's a little taller at normal size
|
||||
\right|_{#2} % this is the delimiter
|
||||
}}
|
||||
|
||||
\newcommand{\todo}[1]{
|
||||
\addcontentsline{tdo}{todo}{\protect{#1}}
|
||||
$\ast$ \marginpar{\tiny $\ast$ #1}
|
||||
}
|
||||
|
||||
\theoremstyle{plain}
|
||||
\newtheorem{theorem}{Theorem}[section]
|
||||
\newtheorem{proposition}[theorem]{Proposition}
|
||||
\newtheorem{lemma}[theorem]{Lemma}
|
||||
\newtheorem{corollary}[theorem]{Corollary}
|
||||
|
||||
\theoremstyle{definition}
|
||||
\newtheorem{definition}[theorem]{Definition}
|
||||
\newtheorem{example}[theorem]{Example}
|
||||
|
||||
\newcommand*{\thead}[1]{\multicolumn{1}{c}{\bfseries #1}}
|
25
thesis/references.bib
Normal file
25
thesis/references.bib
Normal file
|
@ -0,0 +1,25 @@
|
|||
@book{felix,
|
||||
title={Rational homotopy theory},
|
||||
author={F{\'e}lix, Yves and Halperin, Steve and Thomas, Jean-Claude},
|
||||
volume={205},
|
||||
year={2001},
|
||||
publisher={Springer}
|
||||
}
|
||||
|
||||
@book{bous,
|
||||
title={On PL de Rham theory and rational homotopy type},
|
||||
author={Bousfield, Aldridge Knight and Gugenheim, Victor KAM},
|
||||
volume={179},
|
||||
year={1976},
|
||||
publisher={American Mathematical Soc.}
|
||||
}
|
||||
|
||||
@article{hess,
|
||||
title={Rational homotopy theory: a brief introduction},
|
||||
author={Hess, Kathryn and others},
|
||||
journal={Contemporary Mathematics},
|
||||
volume={436},
|
||||
pages={175},
|
||||
year={2007},
|
||||
publisher={Providence, RI; American Mathematical Society; 1999}
|
||||
}
|
9
thesis/style.tex
Normal file
9
thesis/style.tex
Normal file
|
@ -0,0 +1,9 @@
|
|||
|
||||
% lesser margins
|
||||
\usepackage{geometry}
|
||||
\geometry{a4paper}
|
||||
\geometry{twoside=false}
|
||||
|
||||
% no indent, but vertical spacing
|
||||
\usepackage[parfill]{parskip}
|
||||
\setlength{\marginparwidth}{2cm}
|
19
thesis/thesis.tex
Normal file
19
thesis/thesis.tex
Normal file
|
@ -0,0 +1,19 @@
|
|||
\documentclass[a4paper, 11pt]{amsart}
|
||||
|
||||
\input{style}
|
||||
\input{preamble}
|
||||
|
||||
\title{Rational Homotopy Theory}
|
||||
\author{Joshua Moerman}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\input{Definitions} \newpage
|
||||
|
||||
\nocite{*}
|
||||
\bibliographystyle{alpha}
|
||||
\bibliography{references}
|
||||
|
||||
\end{document}
|
Reference in a new issue