Browse Source

Fixes some typos

master
Joshua Moerman 10 years ago
parent
commit
5efbe0843b
  1. 2
      thesis/notes/CDGA_Of_Polynomials.tex
  2. 2
      thesis/notes/Homotopy_Augmented_CDGA.tex
  3. 2
      thesis/notes/Minimal_Models.tex
  4. 6
      thesis/notes/Polynomial_Forms.tex

2
thesis/notes/CDGA_Of_Polynomials.tex

@ -7,7 +7,7 @@ We will now give a cdga model for the $n$-simplex $\Delta^n$. This then allows f
where $\deg{x_i} = 0$. So it is the free cdga with $n+1$ generators and their differentials such that $\sum_{i=0}^n x_i = 1$ and in order to be well behaved $\sum_{i=0}^n d x_i = 0$. where $\deg{x_i} = 0$. So it is the free cdga with $n+1$ generators and their differentials such that $\sum_{i=0}^n x_i = 1$ and in order to be well behaved $\sum_{i=0}^n d x_i = 0$.
} }
Note that the inclusion $\Lambda(x_1, \ldots, x_n, d x_1, \ldots, d x_n) \to \Apl_n$ is an isomorphism of cdga's. So $\Apl_n$ is free and (algebra) maps from it are determined by their images on $x_i$ for $i = 1, \ldots, n$ (also note that this determines the images for $d x_i$). This fact will be used throughout. Note that the inclusion $\Lambda(x_1, \ldots, x_n, d x_1, \ldots, d x_n) \to \Apl_n$ is an isomorphism of cdga's. So $\Apl_n$ is free and (algebra) maps from it are determined by their images on $x_i$ for $i = 1, \ldots, n$ (also note that this determines the images for $d x_i$). This fact will be used throughout. Also note that we have already seen the dual unit interval $\Lambda(t, dt)$ which is isomorphic to $\Apl_1$.
These cdga's will assemble into a simplicial cdga when we define the face and degeneracy maps as follows ($j = 1, \ldots, n$): These cdga's will assemble into a simplicial cdga when we define the face and degeneracy maps as follows ($j = 1, \ldots, n$):

2
thesis/notes/Homotopy_Augmented_CDGA.tex

@ -1,5 +1,5 @@
Recall that an augmented cdga is a cdga $A$ with an algebra map $A \tot{\counit} \k$ (this implies that $\counit \unit = \id$). This is precisely the dual notion of a pointed space. We will use the general fact that if $\cat{C}$ is a model category, then the over (resp. under) category $\cat{C} / A$ (resp. $A / \cat{C}$) for any object $A$ admit an induced model structure. In particular, the category of augmented cdga's (with augmentation preserving maps) has a model structure with the fibrations, cofibrations and weak equilavences as above. Recall that an augmented cdga is a cdga $A$ with an algebra map $A \tot{\counit} \k$ (this implies that $\counit \unit = \id$). This is precisely the dual notion of a pointed space. We will use the general fact that if $\cat{C}$ is a model category, then the over (resp. under) category $\cat{C} / A$ (resp. $A / \cat{C}$) for any object $A$ admit an induced model structure. In particular, the category of augmented cdga's (with augmentation preserving maps) has a model structure with the fibrations, cofibrations and weak equivalences as above.
Although the model structure is completely induced, it might still be fruitful to discuss the right notion of a homotopy for augmented cdga's. Consider the following pullback of cdga's: Although the model structure is completely induced, it might still be fruitful to discuss the right notion of a homotopy for augmented cdga's. Consider the following pullback of cdga's:
\[ \xymatrix{ \[ \xymatrix{

2
thesis/notes/Minimal_Models.tex

@ -132,7 +132,7 @@ Now if the map $f$ is a weak equivalence, both maps $\phi$ and $\psi$ are surjec
\begin{proof} \begin{proof}
Since both $M$ and $M'$ are minimal, they are cofibrant and so the weak equivalence is a strong homotopy equivalence (\CorollaryRef{cdga_homotopy_properties}). And so the induced map $\pi^n(\phi) : \pi^n(M) \to \pi^n(M')$ is an isomorphism (\LemmaRef{cdga-homotopic-maps-equal-pin}). Since both $M$ and $M'$ are minimal, they are cofibrant and so the weak equivalence is a strong homotopy equivalence (\CorollaryRef{cdga_homotopy_properties}). And so the induced map $\pi^n(\phi) : \pi^n(M) \to \pi^n(M')$ is an isomorphism (\LemmaRef{cdga-homotopic-maps-equal-pin}).
Since $M$ (resp. $M'$) is free as a cga's, it is generated by some graded vector space $V$ (resp. $V'$). By an earlier remark \todo{where?} the homotopy groups were eassy to calculate and we conclude that $\phi$ induces an isomorphism from $V$ to $V'$: Since $M$ (resp. $M'$) is free as a cga's, it is generated by some graded vector space $V$ (resp. $V'$). By an earlier remark \todo{where?} the homotopy groups were easy to calculate and we conclude that $\phi$ induces an isomorphism from $V$ to $V'$:
\[ \pi^\ast(\phi) : V \tot{\iso} V'. \] \[ \pi^\ast(\phi) : V \tot{\iso} V'. \]
Conclude that $\phi = \Lambda \phi_0$ \todo{why?} is an isomorphism. Conclude that $\phi = \Lambda \phi_0$ \todo{why?} is an isomorphism.

6
thesis/notes/Polynomial_Forms.tex

@ -42,9 +42,9 @@ where the addition, multiplication and differential are defined pointwise. Concl
\subsection{The singular cochain complex} \subsection{The singular cochain complex}
Another way to model the $n$-simplex is by the singular cochain complex associated to the topological $n$-simplices. Define the following (non-commutative) dga's \todo{Choose: normalized or not?}: Another way to model the $n$-simplex is by the singular cochain complex associated to the topological $n$-simplices. Define the following (non-commutative) dga's:
$$ C_n = C^\ast(\Delta^n; \k). $$ $$ C_n = C^\ast(\Delta^n; \k), $$
The inclusion maps $d^i : \Delta^n \to \Delta^{n+1}$ and the maps $s^i: \Delta^n \to \Delta^{n-1}$ induce face and degeneracy maps on the dga's $C_n$, turning $C$ into a simplicial dga. Again we can extend this to functors by Kan extensions where $C^\ast(\Delta^n; \k)$ is the (normalized) singular cochain complex of $\Delta^n$ with coefficients in $\k$. The inclusion maps $d^i : \Delta^n \to \Delta^{n+1}$ and the maps $s^i: \Delta^n \to \Delta^{n-1}$ induce face and degeneracy maps on the dga's $C_n$, turning $C$ into a simplicial dga. Again we can extend this to functors by Kan extensions
\cdiagram{C_Extension} \cdiagram{C_Extension}
\todo{show that $C^\ast$ really is sing cohom} where the left adjoint is precisely the functor $C^\ast$ as noted in \cite{felix}. We will relate $\Apl$ and $C$ in order to obtain a natural quasi isomorphism $A(X) \we C^\ast(X)$ for every $X \in \sSet$. Furthermore this map preserves multiplication on the homology algebras. \todo{show that $C^\ast$ really is sing cohom} where the left adjoint is precisely the functor $C^\ast$ as noted in \cite{felix}. We will relate $\Apl$ and $C$ in order to obtain a natural quasi isomorphism $A(X) \we C^\ast(X)$ for every $X \in \sSet$. Furthermore this map preserves multiplication on the homology algebras.