Browse Source

Fixes some small things again

master
Joshua Moerman 10 years ago
parent
commit
ad580467e2
  1. 2
      thesis/notes/A_K_Quillen_Pair.tex
  2. 2
      thesis/notes/CDGA_Of_Polynomials.tex
  3. 14
      thesis/notes/Minimal_Models.tex
  4. 3
      thesis/notes/Polynomial_Forms.tex

2
thesis/notes/A_K_Quillen_Pair.tex

@ -77,7 +77,7 @@ Note that for a minimal algebra $\Lambda V$ there is a natural augmentation and
This means that $f_\ast = {d_1}_\ast h_\ast = {d_0}_\ast h_\ast = g_\ast$. \todo{detail} This means that $f_\ast = {d_1}_\ast h_\ast = {d_0}_\ast h_\ast = g_\ast$. \todo{detail}
} }
Consider the augmented cdga $V(n) = D(n) \oplus \k$, with trivial multiplication and where the term $\k$ is used for the unit and augmentation. There is a weak equivalence $A(n) \to V(n)$ (recall \DefinitionRef{minimal-model-sphere}). This augmented cdga can be thought of as a specific model of the sphere. In particular the homotopy groups can be expressed as follows. Consider the augmented cdga $V(n) = S(n) \oplus \k$, with trivial multiplication and where the term $\k$ is used for the unit and augmentation. There is a weak equivalence $A(n) \to V(n)$ (recall \DefinitionRef{minimal-model-sphere}). This augmented cdga can be thought of as a specific model of the sphere. In particular the homotopy groups can be expressed as follows.
\Lemma{cdga-dual-homotopy-groups}{ \Lemma{cdga-dual-homotopy-groups}{
There is a natural bijection for any augmented cdga $A$ There is a natural bijection for any augmented cdga $A$

2
thesis/notes/CDGA_Of_Polynomials.tex

@ -28,7 +28,7 @@ One can check that $\Apl \in \simplicial{\CDGA_\k}$. We will denote the subspace
$\Apl^k$ is contractible. $\Apl^k$ is contractible.
} }
\Proof{ \Proof{
We will prove this by defining an extra degeneracy $s: \Apl_n \to \Apl_{n+1}$. Define for $i = 1, \ldots, n$: \todo{Note geometric interpretation} We will prove this by defining an extra degeneracy $s: \Apl_n \to \Apl_{n+1}$. Define for $i = 1, \ldots, n$:
\begin{align*} \begin{align*}
s(1) &= (1-x_0)^2 \\ s(1) &= (1-x_0)^2 \\
s(x_i) &= (1-x_0) \cdot x_{i+1} s(x_i) &= (1-x_0) \cdot x_{i+1}

14
thesis/notes/Minimal_Models.tex

@ -24,7 +24,7 @@ In this section we will discuss the so called minimal models. These cdga's enjoy
$$ (M, d) \we (A, d). $$ $$ (M, d) \we (A, d). $$
\end{definition} \end{definition}
We will often say \Def{minimal model} or \Def{minimal algebra} to mean minimal Sullivan model or minimal Sullivan algebra. In many cases we can take the degree of the elements in $V$ to induce the filtration, as seen in the following lemma of which the proof is left out, as we are not going to use it. We will often say \Def{minimal model} or \Def{minimal algebra} to mean minimal Sullivan model or minimal Sullivan algebra. In many cases we can take the degree of the elements in $V$ to induce the filtration, as seen in the following lemma.
\Lemma{1-reduced-minimal-model}{ \Lemma{1-reduced-minimal-model}{
Let $(A, d)$ be a cdga which is $1$-reduced, such that $A$ is free as cga and $d$ is decomposable. Then $(A, d)$ is a minimal algebra. Let $(A, d)$ be a cdga which is $1$-reduced, such that $A$ is free as cga and $d$ is decomposable. Then $(A, d)$ is a minimal algebra.
@ -35,7 +35,7 @@ We will often say \Def{minimal model} or \Def{minimal algebra} to mean minimal S
As $A$ is $1$-reduced we have $\deg{x}, \deg{y} \geq 2$ and so by the above $\deg{x}, \deg{y} \leq n-1$. Conclude that $d(V(k)) \subset \Lambda(V(n-1))$. As $A$ is $1$-reduced we have $\deg{x}, \deg{y} \geq 2$ and so by the above $\deg{x}, \deg{y} \leq n-1$. Conclude that $d(V(k)) \subset \Lambda(V(n-1))$.
} }
The above definition is the same as in \cite{felix} without assuming connectivity. We find some different definitions of (minimal) Sullivan algebras in the literature. For example we find a definition using well orderings in \cite{hess}. The decomposability of $d$ also admits a different characterization (at least in the connected case). The equivalence of the definitions is expressed in the following two lemmas. The above definition is the same as in \cite{felix} without assuming connectivity. We find some different definitions of (minimal) Sullivan algebras in the literature. For example we find a definition using well orderings in \cite{hess}. The decomposability of $d$ also admits a different characterization (at least in the connected case). The equivalence of the definitions is expressed in the following two lemmas.\todo{to prove or not to prove}
\Lemma{}{ \Lemma{}{
A cdga $(\Lambda V, d)$ is a Sullivan algebra if and only if there exists a well order $J$ such that $V$ is generated by $v_j$ for $j \in J$ and $d v_j \in \Lambda V_{<j}$. A cdga $(\Lambda V, d)$ is a Sullivan algebra if and only if there exists a well order $J$ such that $V$ is generated by $v_j$ for $j \in J$ and $d v_j \in \Lambda V_{<j}$.
@ -57,14 +57,14 @@ It is clear that induction will be an important technique when proving things ab
Start by setting $V(0) = H^{\geq 1}(A)$ and $d = 0$. This extends to a morphism $m_0 : (\Lambda V(0), 0) \to (A, d)$. Start by setting $V(0) = H^{\geq 1}(A)$ and $d = 0$. This extends to a morphism $m_0 : (\Lambda V(0), 0) \to (A, d)$.
Note that the freeness introduces products such that the map $H(m_0) : H(\Lambda V(0)) \to H(A)$ is \emph{not} an isomorphism. We will ``kill'' these defects inductively. Note that the freeness introduces products such that the map $H(m_0) : H(\Lambda V(0)) \to H(A)$ is \emph{not} an isomorphism. We will ``kill'' these defects inductively.
Suppose $V(k)$ and $m_k$ are constructed. Consider the defect $\ker H(m_k)$ and let $\{[z_\alpha]\}_{\alpha \in A}$ be a basis for it. Define $V_{k+1} = \bigoplus_{\alpha \in A} \k \cdot v_\alpha$ with the degrees $\deg{v_\alpha} = \deg{z_\alpha}-1$. Suppose $V(k)$ and $m_k$ have been constructed. Consider the defect $\ker H(m_k)$ and let $\{[z_\alpha]\}_{\alpha \in A}$ be a basis for it. Define $V_{k+1} = \bigoplus_{\alpha \in A} \k \cdot v_\alpha$ with the degrees $\deg{v_\alpha} = \deg{z_\alpha}-1$.
Now extend the differential by defining $d(v_\alpha) = z_\alpha$. This step kills the defect, but also introduces new defects which will be killed later. Notice that $z_\alpha$ is a cocycle and hence $d^2 v_\alpha = 0$, so $d$ is still a differential. Now extend the differential by defining $d(v_\alpha) = z_\alpha$. This step kills the defect, but also introduces new defects which will be killed later. Notice that $z_\alpha$ is a cocycle and hence $d^2 v_\alpha = 0$, so $d$ is still a differential.
Since $[z_\alpha]$ is in the kernel of $H(m_k)$ we see that $m_k z_\alpha = d a_\alpha$ for some $a_\alpha$. Extend $m_k$ to $m_{k+1}$ by defining $m_{k+1}(v_\alpha) = a_\alpha$. Notice that $m_{k+1} d v_\alpha = m_{k+1} z_\alpha = d a_\alpha = d m_{k+1} v_\alpha$, so $m_{k+1}$ is a cochain map. Since $[z_\alpha]$ is in the kernel of $H(m_k)$ we see that $m_k z_\alpha = d a_\alpha$ for some $a_\alpha$. Extend $m_k$ to $m_{k+1}$ by defining $m_{k+1}(v_\alpha) = a_\alpha$. Notice that $m_{k+1} d v_\alpha = m_{k+1} z_\alpha = d a_\alpha = d m_{k+1} v_\alpha$, so $m_{k+1}$ is a cochain map.
Now take $V(k+1) = V(k) \oplus V_{k+1}$. Now take $V(k+1) = V(k) \oplus V_{k+1}$.
Complete the construction by taking the union: $V = \bigcup_k V(k)$. Clearly $H(m)$ is surjective, this was established in the first step. Now if $H(m)[z] = 0$, then we know $z \in \Lambda V(k)$ for some stage $k$ and hence by construction is was killed, i.e. $[z] = 0$. So we see that $m$ is a quasi isomorphism and by construction $(\Lambda V, d)$ is a Sullivan algebra. Complete the construction by taking the union: $V = \bigcup_k V(k)$. Clearly $H(m)$ is surjective, this was established in the first step. Now if $H(m)[z] = 0$, then we know $z \in \Lambda V(k)$ for some stage $k$ and hence by construction is was killed, i.e. $[z] = 0$. So we see that $m$ is a quasi isomorphism and by construction $(\Lambda V, d)$ is a Sullivan algebra.
Now assume that $(A, d)$ is $r$-connected ($r \geq 1$), this means that $H^i(A) = 0$ for all $1 \leq i \leq r$, and so $V(0)^i = 0$ for all $i \leq r$. Now $H(m_0)$ is injective on $\Lambda^{\leq 1} V(0)$, and so the defects are in $\Lambda^{\geq 2} V(0)$ and have at least degree $2(r+1)$. This means two things in the first inductive step of the construction. First, the newly added elements have decomposable differential. Secondly, these elements are at least of degree $2(r+1) - 1$. After adding these elements, the new defects are in $\Lambda^{\geq 2} V(1)$ and have at least degree $2(2(r+1) - 1)$. We see that as the construction continues, the degrees of adjoined elements go up. Hence $V^i = 0$ for all $i \leq r$ and by the previous lemma $(\Lambda V, d)$ is minimal. \todo{Rewrite this section} Now assume that $(A, d)$ is $r$-connected ($r \geq 1$), this means that $H^i(A) = 0$ for all $1 \leq i \leq r$, and so $V(0)^i = 0$ for all $i \leq r$. Now $H(m_0)$ is injective on $\Lambda^{\leq 1} V(0)$, and so the defects are in $\Lambda^{\geq 2} V(0)$ and have at least degree $2(r+1)$. This means two things in the first inductive step of the construction. First, the newly added elements have decomposable differential. Secondly, these elements are at least of degree $2(r+1) - 1$. After adding these elements, the new defects are in $\Lambda^{\geq 2} V(1)$ and have at least degree $2(2(r+1) - 1)$. We see that as the construction continues, the degrees of adjoined elements go up. Hence $V^i = 0$ for all $i \leq r$ and by \LemmaRef{1-reduced-minimal-model} $(\Lambda V, d)$ is minimal.
\end{proof} \end{proof}
@ -102,7 +102,7 @@ Before we state the uniqueness theorem we need some more properties of minimal m
We have $p^\ast [x] = [px] = 0$, since $p^\ast$ is injective we have $x = d \overline{x}$ for some $\overline{x} \in X$. Now $p \overline{x} = y' + db$ for some $b \in Y$. Choose $a \in X$ with $p a = b$, then define $x' = \overline{x} - da$. Now check the requirements: $p x' = p \overline{x} - p a = y'$ and $d x' = d \overline{x} - d d a = d \overline{x} = x$. We have $p^\ast [x] = [px] = 0$, since $p^\ast$ is injective we have $x = d \overline{x}$ for some $\overline{x} \in X$. Now $p \overline{x} = y' + db$ for some $b \in Y$. Choose $a \in X$ with $p a = b$, then define $x' = \overline{x} - da$. Now check the requirements: $p x' = p \overline{x} - p a = y'$ and $d x' = d \overline{x} - d d a = d \overline{x} = x$.
\end{proof} \end{proof}
In the following we will need to replace a map by a fibration. But the one given abstractly from the model structure will not fit our needs. So we will first consider the following factorization. In the following we will need to replace a map by a fibration. But the one given abstractly from the model structure will not fit our needs. So we will first consider the following factorization.\todo{This actually is the same as in chapter 4}
Let $A$ be any cochain complex (not an algebra) and define $C(A)^k = C^k \oplus C^{k-1}$. Then $C(A)$ is again a cochain complex when we define the differential to be $\delta(c_k, c_{k-1}) = (0, c_k)$. Note that this cochain complex is acyclic, furthermore there is an obvious surjection $C(A) \tot{\rho} A$. Now for a cochain algebra $A$, we can do the same construction (by forgetting the algebra structure) and apply $\Lambda$. This defines a cdga $\Lambda C(A)$ (which is still acyclic). Let $A$ be any cochain complex (not an algebra) and define $C(A)^k = C^k \oplus C^{k-1}$. Then $C(A)$ is again a cochain complex when we define the differential to be $\delta(c_k, c_{k-1}) = (0, c_k)$. Note that this cochain complex is acyclic, furthermore there is an obvious surjection $C(A) \tot{\rho} A$. Now for a cochain algebra $A$, we can do the same construction (by forgetting the algebra structure) and apply $\Lambda$. This defines a cdga $\Lambda C(A)$ (which is still acyclic).
@ -128,7 +128,7 @@ Now if the map $f$ is a weak equivalence, both maps $\phi$ and $\psi$ are surjec
Let $\phi: (M, d) \we (M', d')$ be a weak equivalence between minimal algebras. Then $\phi$ is an isomorphism. Let $\phi: (M, d) \we (M', d')$ be a weak equivalence between minimal algebras. Then $\phi$ is an isomorphism.
\end{lemma} \end{lemma}
\begin{proof} \begin{proof}
Let $M$ and $M'$ be generated by $V$ and $V'$. Then $\phi$ induces a weak equivalence on the linear part $\phi_0: V \we V'$ \cite[Theorem 1.5.2]{loday}. Since the differentials are decomposable, their linear part vanishes. So we see that $\phi_0: (V, 0) \tot{\iso} (V', 0)$ is an isomorphism. \todo{introduce homotopy groups before this point. Prove it using that} Let $M$ and $M'$ be generated by $V$ and $V'$. Then $\phi$ induces a weak equivalence on the linear part $\phi_0: V \we V'$ \cite[Theorem 1.5.2]{loday}. Since the differentials are decomposable, their linear part vanishes. So we see that $\phi_0: (V, 0) \tot{\iso} (V', 0)$ is an isomorphism.
Conclude that $\phi = \Lambda \phi_0$ is an isomorphism. Conclude that $\phi = \Lambda \phi_0$ is an isomorphism.
\end{proof} \end{proof}
@ -139,7 +139,7 @@ Now if the map $f$ is a weak equivalence, both maps $\phi$ and $\psi$ are surjec
By the previous lemmas we have $[M', M] \iso [M', A]$. By going from right to left we get a map $\phi: M' \to M$ such that $m' \circ \phi \eq m$. On homology we get $H(m') \circ H(\phi) = H(m)$, proving that (2-out-of-3) $\phi$ is a weak equivalence. The previous lemma states that $\phi$ is then an isomorphism. By the previous lemmas we have $[M', M] \iso [M', A]$. By going from right to left we get a map $\phi: M' \to M$ such that $m' \circ \phi \eq m$. On homology we get $H(m') \circ H(\phi) = H(m)$, proving that (2-out-of-3) $\phi$ is a weak equivalence. The previous lemma states that $\phi$ is then an isomorphism.
\end{proof} \end{proof}
The assignment of $X$ to its minimal model $M_X = (\Lambda V, d)$ can be extended to morphisms. Let $X$ and $Y$ be two cdga's and $f: X \to Y$ be a map. By considering their minimal models we get the following diagram. The assignment to $X$ of its minimal model $M_X = (\Lambda V, d)$ can be extended to morphisms. Let $X$ and $Y$ be two cdga's and $f: X \to Y$ be a map. By considering their minimal models we get the following diagram.
\begin{displaymath} \begin{displaymath}
\xymatrix @C=1.5cm{ \xymatrix @C=1.5cm{
X \ar[r]^f & Y \\ X \ar[r]^f & Y \\

3
thesis/notes/Polynomial_Forms.tex

@ -46,8 +46,7 @@ Another way to model the $n$-simplex is by the singular cochain complex associat
$$ C_n = C^\ast(\Delta^n; \k). $$ $$ C_n = C^\ast(\Delta^n; \k). $$
The inclusion maps $d^i : \Delta^n \to \Delta^{n+1}$ and the maps $s^i: \Delta^n \to \Delta^{n-1}$ induce face and degeneracy maps on the dga's $C_n$, turning $C$ into a simplicial dga. Again we can extend this to functors by Kan extensions The inclusion maps $d^i : \Delta^n \to \Delta^{n+1}$ and the maps $s^i: \Delta^n \to \Delta^{n-1}$ induce face and degeneracy maps on the dga's $C_n$, turning $C$ into a simplicial dga. Again we can extend this to functors by Kan extensions
\cdiagram{C_Extension} \cdiagram{C_Extension}
\todo{show that $C^\ast$ really is sing cohom} where the left adjoint is precisely the functor $C^\ast$ as noted in \cite{felix}. We will relate $\Apl$ and $C$ in order to obtain a natural quasi isomorphism $A(X) \we C^\ast(X)$ for every $X \in \sSet$. Furthermore this map preserves multiplication on the homology algebras.
where the left adjoint is precisely the functor $C^\ast$ as noted in \cite{felix}. We will relate $\Apl$ and $C$ in order to obtain a natural quasi isomorphism $A(X) \we C^\ast(X)$ for every $X \in \sSet$. Furthermore this map preserves multiplication on the homology algebras.
\subsection{Integration and Stokes' theorem for polynomial forms} \subsection{Integration and Stokes' theorem for polynomial forms}