Joshua Moerman
10 years ago
3 changed files with 365 additions and 0 deletions
@ -0,0 +1,20 @@ |
|||
|
|||
.PHONY: thesis fast dirs |
|||
|
|||
# We don want to pollute the root dir, so we use a build dir
|
|||
# http://tex.stackexchange.com/questions/12686/how-do-i-run-bibtex-after-using-the-output-directory-flag-with-pdflatex-when-f
|
|||
thesis: dirs |
|||
xelatex -file-line-error -output-directory=build Rational_Homotopy_Theory.tex |
|||
xelatex -file-line-error -output-directory=build Rational_Homotopy_Theory.tex |
|||
cp build/Rational_Homotopy_Theory.pdf ./ |
|||
|
|||
fast: dirs |
|||
xelatex -file-line-error -output-directory=build Rational_Homotopy_Theory.tex |
|||
cp build/Rational_Homotopy_Theory.pdf ./ |
|||
|
|||
haltfast: dirs |
|||
xelatex -file-line-error -output-directory=build --halt-on-error Rational_Homotopy_Theory.tex |
|||
cp build/Rational_Homotopy_Theory.pdf ./ |
|||
|
|||
dirs: |
|||
mkdir -p build |
@ -0,0 +1,185 @@ |
|||
\documentclass[14pt]{beamer} |
|||
|
|||
\definecolor{todocolor}{rgb}{1, 0.3, 0.2} |
|||
\newcommand{\td}[1]{\colorbox{todocolor}{*\footnote{TODO: #1}}} |
|||
|
|||
\input{preamble} |
|||
\usepackage{tabularx} |
|||
\renewcommand{\tabularxcolumn}[1]{p{#1}} |
|||
|
|||
\newcommand{\Frame}[2]{ |
|||
\begin{frame}{#1}#2\end{frame} |
|||
} |
|||
|
|||
\title{Rational Homotopy Theory} |
|||
\author{Joshua Moerman} |
|||
\institute[Radboud Universiteit Nijmegen]{Supervisor: Ieke Moerdijk} |
|||
\date{} |
|||
|
|||
\begin{document} |
|||
|
|||
\AtBeginSection[]{ |
|||
\begin{frame}<beamer> |
|||
\tableofcontents[currentsection] |
|||
\end{frame} |
|||
} |
|||
|
|||
\Frame{}{ |
|||
\titlepage |
|||
} |
|||
|
|||
|
|||
\section{Introduction to homotopy theory} |
|||
\Frame{Homotopy theory}{ |
|||
\begin{center} |
|||
Study of space or shapes \\ |
|||
with ``weak equivalences'' |
|||
|
|||
\bigskip |
|||
\td{plaatje} |
|||
\end{center} |
|||
} |
|||
|
|||
\Frame{Important spaces}{ |
|||
\td{plaatjes} |
|||
\begin{align*} |
|||
S^1 &= ... \\[1em] |
|||
S^2 &= ... \\[1em] |
|||
S^3 &= \cdots \\[1em] |
|||
&\cdots |
|||
\end{align*} |
|||
} |
|||
|
|||
\Frame{Important tool}{ |
|||
Fundamental group: |
|||
|
|||
\[ \pi_1(X) = \text{maps } S^1 \to X \text{ up to homotopy} \] |
|||
|
|||
\bigskip |
|||
\td{plaatje} |
|||
} |
|||
|
|||
\Frame{Important tools}{ |
|||
Homotopy groups: |
|||
|
|||
\begin{align*} |
|||
\pi_1(X) &= \text{maps } S^1 \to X \text{ up to homotopy} \\[1em] |
|||
\pi_2(X) &= \text{maps } S^2 \to X \text{ up to homotopy} \\[1em] |
|||
\pi_3(X) &= \text{maps } S^3 \to X \text{ up to homotopy} \\[1em] |
|||
&\cdots |
|||
\end{align*} |
|||
} |
|||
|
|||
\Frame{Torsion-free}{ |
|||
Serre proved in 1950s: |
|||
\begin{align*} |
|||
\text{odd } k: \quad \pi_n(S^k) \tensor \Q &= |
|||
\begin{cases} |
|||
\Q &\text{ if } n = k \\ |
|||
0 &\text{ otherwise } |
|||
\end{cases} \\[1em] |
|||
\text{even } k: \quad \pi_n(S^k) \tensor \Q &= |
|||
\begin{cases} |
|||
\Q &\text{ if } n = k, 2k-1 \\ |
|||
0 &\text{ otherwise } |
|||
\end{cases} \\ |
|||
\end{align*} |
|||
} |
|||
|
|||
|
|||
\section{Rational homotopy theory} |
|||
\Frame{Rational homotopy theory}{ |
|||
\begin{center} |
|||
Study of spaces\\ |
|||
with ``rational equivalences'' \\ |
|||
and ``rational homotopy groups'' |
|||
|
|||
\pause |
|||
\bigskip |
|||
or |
|||
\bigskip |
|||
|
|||
Study of \emph{rational} spaces \\ |
|||
with weak equivalences \\ |
|||
and ordinary homotopy groups |
|||
\end{center} |
|||
} |
|||
|
|||
\Frame{Rational spaces}{ |
|||
$X$ is \emph{rational} if $\pi_n(X)$ is a $\Q$-vector space |
|||
|
|||
\bigskip |
|||
\td{plaatje telescoop} |
|||
} |
|||
|
|||
|
|||
\section{The main equivalence} |
|||
\Frame{Main equivalence}{ |
|||
\begin{theorem} |
|||
\begin{center} |
|||
Homotopy theory of rational spaces \\ |
|||
= \\ |
|||
Homotopy theory of commutative differential graded algebras |
|||
\end{center} |
|||
\end{theorem} |
|||
} |
|||
|
|||
\Frame{Main equivalence (precise version)}{ |
|||
\begin{theorem} |
|||
\[ \Ho(\Top_{\Q, 1, f}) \simeq \opCat{\Ho(\CDGA_{\Q, 1, f})} \] |
|||
\end{theorem} |
|||
} |
|||
|
|||
\Frame{What is a cdga?}{ |
|||
\begin{definition} |
|||
a cdga $A$ is |
|||
\begin{itemize} |
|||
\item a $\Q$-vector space |
|||
\item with a multiplication $A \tensor A \tot{\mu} A$ |
|||
\item with a differential $A \tot{d} A$ such that $d^2 = 0$ |
|||
\item with a grading $A = \bigoplus_{n \in \N} A^n$ |
|||
\item it is commutative: $ x y = (-1)^{\deg{x}\cdot\deg{y}} y x $ |
|||
\end{itemize} |
|||
\end{definition} |
|||
} |
|||
|
|||
\Frame{Free cdga's}{ |
|||
As always: there is a free guy: $\Lambda(...)$ |
|||
|
|||
For example |
|||
\[ \Lambda(t, dt) \text{ with } \deg{t} = 0 \] |
|||
is just polynomials in $t$, with its differential $dt$ |
|||
} |
|||
|
|||
\newcommand{\Dict}[1]{ |
|||
\noindent |
|||
\begin{tabularx}{\textwidth}{ X X } |
|||
{\bf rational spaces} & {\bf cdga's} \\[1em] |
|||
#1 |
|||
\end{tabularx} |
|||
} |
|||
|
|||
\Frame{Dictionary}{ |
|||
\Dict{ |
|||
$S^n$ with $n$ odd |
|||
& $\Lambda(e)$ with $\deg{e} = n$ \\[1em] |
|||
|
|||
$S^n$ with $n$ even |
|||
& $\Lambda(e, f)$ with $\deg{e} = n$, $\deg{f} = 2n-1$ and $d f = e^2$ \\[1em] |
|||
|
|||
Eilenberg-MacLane space $K(\Q, n)$ |
|||
& $\Lambda(e)$ with $\deg{e} = n$ |
|||
} |
|||
} |
|||
|
|||
\Frame{Dictionary}{ |
|||
\Dict{ |
|||
homotopy $$h: X \times I \to Y$$ |
|||
& homotopy $$h: A \to B \tensor \Lambda(t, dt)$$ \\[1em] |
|||
|
|||
$f: X \to Y$ weak equivalence if $\pi_n(f): \pi_n(X) \iso \pi_n(Y)$ |
|||
& $f: A \to B$ weak equivalence if $H(f): H(X) \iso H(Y)$ |
|||
} |
|||
} |
|||
|
|||
\end{document} |
@ -0,0 +1,160 @@ |
|||
|
|||
% normally included with amsart |
|||
% \usepackage{amsmath, amsthm} |
|||
|
|||
% font with unicode support, does not work with classicthesis |
|||
% \usepackage{fontspec} |
|||
|
|||
% clickable tocs |
|||
\usepackage{hyperref} |
|||
|
|||
% floating figures |
|||
\usepackage{float} |
|||
|
|||
% for multiple cites |
|||
\usepackage{cite} |
|||
|
|||
% fancy diagrams |
|||
\usepackage{tikz} |
|||
\usetikzlibrary{matrix, arrows, decorations} |
|||
\tikzset{node distance=2.5em, row sep=2.2em, column sep=2.7em, auto} |
|||
|
|||
% simple diagrams |
|||
% \usepackage[all,cmtip]{xy} |
|||
|
|||
\usepackage{graphicx} |
|||
% \graphicspath{ {./images/} } |
|||
\usepackage{caption} |
|||
\usepackage{subcaption} |
|||
|
|||
% for the fib arrow |
|||
\usepackage{amssymb} |
|||
|
|||
% Some basic objects |
|||
\newcommand{\N}{\mathbb{N}} % natural numbers |
|||
\newcommand{\Np}{{\mathbb{N}^{>0}}} % positive numbers |
|||
\newcommand{\Z}{\mathbb{Z}} % integers |
|||
\newcommand{\R}{\mathbb{R}} % reals |
|||
\DeclareRobustCommand{\Q}{\mathbb{Q}} % rationals |
|||
\renewcommand{\k}{\mathrm{I\!k}} % default ground ring |
|||
|
|||
% Basic category stuff |
|||
\newcommand{\cat}[1]{\mathbf{#1}} % the category of ... |
|||
\newcommand{\opCat}[1]{{#1}^{\text{op}}}% opposite category |
|||
\newcommand{\Hom}{\mathbf{Hom}} |
|||
\newcommand{\id}{\mathbf{id}} |
|||
\newcommand{\Ho}{\cat{Ho}} |
|||
|
|||
% Categories |
|||
\newcommand{\Set}{\cat{Set}} % sets |
|||
\newcommand{\Top}{\cat{Top}} % topological spaces |
|||
\newcommand{\Grp}{\cat{Grp}} % groups |
|||
\newcommand{\Ab}{\cat{Ab}} % abelian groups |
|||
\newcommand{\DELTA}{\boldsymbol{\Delta}}% the simplicial cat |
|||
\newcommand{\simplicial}[1]{\cat{s{#1}}}% simplicial objects |
|||
\newcommand{\sSet}{\simplicial{\Set}} % simplicial sets |
|||
\newcommand{\Mod}[1]{\cat{{#1}Mod}} % modules over a ring |
|||
\newcommand{\Alg}[1]{\cat{{#1}Alg}} % algebras over a ring |
|||
\newcommand{\grMod}[1]{\cat{gr\mbox{-}{#1}Mod}} % graded modules over a ring |
|||
\newcommand{\grAlg}[1]{\cat{gr\mbox{-}{#1}Alg}} % graded algebras over a ring |
|||
\newcommand{\dgMod}[1]{\cat{dg\mbox{-}{#1}Mod}} % differential graded modules over a ring |
|||
\newcommand{\dgAlg}[1]{\cat{dg\mbox{-}{#1}Alg}} % differential graded algebras over a ring |
|||
\newcommand{\Ch}[1]{\cat{Ch_{n\geq0}({#1})}} % chain complexes |
|||
\newcommand{\CoCh}[1]{\cat{Ch^{n\geq0}({#1})}} % cochain complexes |
|||
\DeclareRobustCommand{\DGA}{\cat{DGA}} % cochain algebras |
|||
\DeclareRobustCommand{\CDGA}{\cat{CDGA}} % commutative cochain algebras |
|||
\DeclareRobustCommand{\AugCDGA}{\cat{CDGA^\ast}}% augmentedcommutative cochain algebras |
|||
|
|||
\newcommand{\cof}{\hookrightarrow} % cofibration |
|||
\newcommand{\fib}{\twoheadrightarrow} % fibration |
|||
\newcommand{\we}{\tot{\simeq}} % weak equivalence |
|||
|
|||
% for use in xy diagrams |
|||
\newcommand{\arcof}{\ar@{^{(}->}} |
|||
\newcommand{\artcof}{\ar@{^{(}->}|\simeq} |
|||
\newcommand{\arfib}{\ar@{->>}} |
|||
\newcommand{\artfib}{\ar@{->>}|\simeq} |
|||
\newcommand{\arwe}{\ar|-\simeq} |
|||
\newcommand{\ariso}{\ar|-\iso} |
|||
|
|||
% adjunction symbol for xymatrices |
|||
\newcommand{\xyadj}{\raisebox{0.2\height}{\scalebox{0.5}{$\perp$}}} |
|||
|
|||
% pushout and pullback for xymatrices (makes empty arrow with text) |
|||
\newcommand{\xypo}{\ar@{}[dr]|(.75){\scalebox{1.2}{$\ulcorner$}}} |
|||
\newcommand{\xypb}{\ar@{}[dr]|(.25){\scalebox{1.2}{$\lrcorner$}}} |
|||
|
|||
%\newcommand{\leftadj}{\ooalign{\hss\rightleftarrows\hss\cr\bot}} |
|||
\newcommand{\leftadj}{\rightleftarrows} |
|||
|
|||
% Notation and operators |
|||
\newcommand{\I}{\,\mid\,} % seperator in set notation |
|||
\newcommand{\del}{\partial} % boundary |
|||
\newcommand{\iso}{\cong} % isomorphic |
|||
\newcommand{\eq}{\sim} % homotopic |
|||
\newcommand{\ison}[1]{\stackrel{(#1)}{\iso}} % isos to refer to |
|||
\newcommand{\refison}[1]{{\small $(#1)$}} % ref |
|||
\newcommand{\tot}[1]{\xrightarrow{\,\,{#1}\,\,}} % arrow with name |
|||
\newcommand{\toti}[1]{\xleftarrow{\,\,{#1}\,\,}} % left arrow with name |
|||
\newcommand{\mapstot}[1]{\xmapsto{\,\,{#1}\,\,}} % mapsto with name |
|||
\newcommand{\unit}{\eta} |
|||
\newcommand{\counit}{\epsilon} |
|||
\DeclareMathOperator*{\im}{im} |
|||
\DeclareMathOperator*{\coker}{coker} |
|||
\DeclareMathOperator*{\colim}{colim} |
|||
\DeclareMathOperator*{\Tor}{Tor} |
|||
\DeclareMathOperator*{\Ext}{Ext} |
|||
\DeclareMathOperator*{\tensor}{\otimes} |
|||
\DeclareMathOperator*{\bigtensor}{\bigotimes} |
|||
\renewcommand{\deg}[1]{{|{#1}|}} |
|||
\newcommand{\Char}[1]{char({#1})} |
|||
\newcommand{\RH}{\widetilde{H}} % reduced homology |
|||
\DeclareRobustCommand{\C}{\mathcal{C}} % Serre mod C class |
|||
\newcommand{\Apl}[0]{{A_{PL}}} % Apl simplicial set of polynomials |
|||
|
|||
\newcommand{\titleCDGA}{\texorpdfstring{$\CDGA$}{CDGA}} |
|||
|
|||
% restriction of a function |
|||
\newcommand\restr[2]{{% we make the whole thing an ordinary symbol |
|||
\left.\kern-\nulldelimiterspace % automatically resize the bar with \right |
|||
#1 % the function |
|||
\vphantom{\big|} % pretend it's a little taller at normal size |
|||
\right|_{#2} % this is the delimiter |
|||
}} |
|||
|
|||
% Todos in the margin |
|||
\newcommand{\todo}[1]{ |
|||
\addcontentsline{tdo}{todo}{\protect{#1}} |
|||
$\ast$ \marginpar{\tiny $\ast$ #1} |
|||
} |
|||
% Big todos in text |
|||
\newcommand{\TODO}[1]{ |
|||
\addcontentsline{tdo}{todo}{\protect{#1}} |
|||
{\tiny $\ast$ #1} |
|||
} |
|||
% TODO item, as itemize does not work |
|||
\newcommand{\titem}[0]{\\-\qquad} |
|||
% List of todos |
|||
\makeatletter |
|||
\newcommand \listoftodos{\section*{Todo list} \@starttoc{tdo}} |
|||
\newcommand\l@todo[2]{ |
|||
\par\noindent \textit{#2}, \parbox{10cm}{#1}\par |
|||
} |
|||
\makeatother |
|||
|
|||
% simple way to center an image |
|||
\newcommand{\cimage}[2][]{ |
|||
\begin{center} |
|||
\includegraphics[#1]{#2} |
|||
\end{center} |
|||
} |
|||
|
|||
% simple way to center a diagram |
|||
\newcommand{\cdiagrambase}[1]{ |
|||
\begin{displaymath} |
|||
\input{#1} |
|||
\end{displaymath} |
|||
} |
|||
\newcommand{\cdiagram}[1]{ |
|||
\cdiagrambase{diagrams/#1} |
|||
} |
Reference in new issue