Adds stub for presentation
This commit is contained in:
parent
7aa8adb2fa
commit
b7d07fedb3
3 changed files with 365 additions and 0 deletions
20
presentation/Makefile
Normal file
20
presentation/Makefile
Normal file
|
@ -0,0 +1,20 @@
|
||||||
|
|
||||||
|
.PHONY: thesis fast dirs
|
||||||
|
|
||||||
|
# We don want to pollute the root dir, so we use a build dir
|
||||||
|
# http://tex.stackexchange.com/questions/12686/how-do-i-run-bibtex-after-using-the-output-directory-flag-with-pdflatex-when-f
|
||||||
|
thesis: dirs
|
||||||
|
xelatex -file-line-error -output-directory=build Rational_Homotopy_Theory.tex
|
||||||
|
xelatex -file-line-error -output-directory=build Rational_Homotopy_Theory.tex
|
||||||
|
cp build/Rational_Homotopy_Theory.pdf ./
|
||||||
|
|
||||||
|
fast: dirs
|
||||||
|
xelatex -file-line-error -output-directory=build Rational_Homotopy_Theory.tex
|
||||||
|
cp build/Rational_Homotopy_Theory.pdf ./
|
||||||
|
|
||||||
|
haltfast: dirs
|
||||||
|
xelatex -file-line-error -output-directory=build --halt-on-error Rational_Homotopy_Theory.tex
|
||||||
|
cp build/Rational_Homotopy_Theory.pdf ./
|
||||||
|
|
||||||
|
dirs:
|
||||||
|
mkdir -p build
|
185
presentation/Rational_Homotopy_Theory.tex
Normal file
185
presentation/Rational_Homotopy_Theory.tex
Normal file
|
@ -0,0 +1,185 @@
|
||||||
|
\documentclass[14pt]{beamer}
|
||||||
|
|
||||||
|
\definecolor{todocolor}{rgb}{1, 0.3, 0.2}
|
||||||
|
\newcommand{\td}[1]{\colorbox{todocolor}{*\footnote{TODO: #1}}}
|
||||||
|
|
||||||
|
\input{preamble}
|
||||||
|
\usepackage{tabularx}
|
||||||
|
\renewcommand{\tabularxcolumn}[1]{p{#1}}
|
||||||
|
|
||||||
|
\newcommand{\Frame}[2]{
|
||||||
|
\begin{frame}{#1}#2\end{frame}
|
||||||
|
}
|
||||||
|
|
||||||
|
\title{Rational Homotopy Theory}
|
||||||
|
\author{Joshua Moerman}
|
||||||
|
\institute[Radboud Universiteit Nijmegen]{Supervisor: Ieke Moerdijk}
|
||||||
|
\date{}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
|
||||||
|
\AtBeginSection[]{
|
||||||
|
\begin{frame}<beamer>
|
||||||
|
\tableofcontents[currentsection]
|
||||||
|
\end{frame}
|
||||||
|
}
|
||||||
|
|
||||||
|
\Frame{}{
|
||||||
|
\titlepage
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
\section{Introduction to homotopy theory}
|
||||||
|
\Frame{Homotopy theory}{
|
||||||
|
\begin{center}
|
||||||
|
Study of space or shapes \\
|
||||||
|
with ``weak equivalences''
|
||||||
|
|
||||||
|
\bigskip
|
||||||
|
\td{plaatje}
|
||||||
|
\end{center}
|
||||||
|
}
|
||||||
|
|
||||||
|
\Frame{Important spaces}{
|
||||||
|
\td{plaatjes}
|
||||||
|
\begin{align*}
|
||||||
|
S^1 &= ... \\[1em]
|
||||||
|
S^2 &= ... \\[1em]
|
||||||
|
S^3 &= \cdots \\[1em]
|
||||||
|
&\cdots
|
||||||
|
\end{align*}
|
||||||
|
}
|
||||||
|
|
||||||
|
\Frame{Important tool}{
|
||||||
|
Fundamental group:
|
||||||
|
|
||||||
|
\[ \pi_1(X) = \text{maps } S^1 \to X \text{ up to homotopy} \]
|
||||||
|
|
||||||
|
\bigskip
|
||||||
|
\td{plaatje}
|
||||||
|
}
|
||||||
|
|
||||||
|
\Frame{Important tools}{
|
||||||
|
Homotopy groups:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\pi_1(X) &= \text{maps } S^1 \to X \text{ up to homotopy} \\[1em]
|
||||||
|
\pi_2(X) &= \text{maps } S^2 \to X \text{ up to homotopy} \\[1em]
|
||||||
|
\pi_3(X) &= \text{maps } S^3 \to X \text{ up to homotopy} \\[1em]
|
||||||
|
&\cdots
|
||||||
|
\end{align*}
|
||||||
|
}
|
||||||
|
|
||||||
|
\Frame{Torsion-free}{
|
||||||
|
Serre proved in 1950s:
|
||||||
|
\begin{align*}
|
||||||
|
\text{odd } k: \quad \pi_n(S^k) \tensor \Q &=
|
||||||
|
\begin{cases}
|
||||||
|
\Q &\text{ if } n = k \\
|
||||||
|
0 &\text{ otherwise }
|
||||||
|
\end{cases} \\[1em]
|
||||||
|
\text{even } k: \quad \pi_n(S^k) \tensor \Q &=
|
||||||
|
\begin{cases}
|
||||||
|
\Q &\text{ if } n = k, 2k-1 \\
|
||||||
|
0 &\text{ otherwise }
|
||||||
|
\end{cases} \\
|
||||||
|
\end{align*}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
\section{Rational homotopy theory}
|
||||||
|
\Frame{Rational homotopy theory}{
|
||||||
|
\begin{center}
|
||||||
|
Study of spaces\\
|
||||||
|
with ``rational equivalences'' \\
|
||||||
|
and ``rational homotopy groups''
|
||||||
|
|
||||||
|
\pause
|
||||||
|
\bigskip
|
||||||
|
or
|
||||||
|
\bigskip
|
||||||
|
|
||||||
|
Study of \emph{rational} spaces \\
|
||||||
|
with weak equivalences \\
|
||||||
|
and ordinary homotopy groups
|
||||||
|
\end{center}
|
||||||
|
}
|
||||||
|
|
||||||
|
\Frame{Rational spaces}{
|
||||||
|
$X$ is \emph{rational} if $\pi_n(X)$ is a $\Q$-vector space
|
||||||
|
|
||||||
|
\bigskip
|
||||||
|
\td{plaatje telescoop}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
\section{The main equivalence}
|
||||||
|
\Frame{Main equivalence}{
|
||||||
|
\begin{theorem}
|
||||||
|
\begin{center}
|
||||||
|
Homotopy theory of rational spaces \\
|
||||||
|
= \\
|
||||||
|
Homotopy theory of commutative differential graded algebras
|
||||||
|
\end{center}
|
||||||
|
\end{theorem}
|
||||||
|
}
|
||||||
|
|
||||||
|
\Frame{Main equivalence (precise version)}{
|
||||||
|
\begin{theorem}
|
||||||
|
\[ \Ho(\Top_{\Q, 1, f}) \simeq \opCat{\Ho(\CDGA_{\Q, 1, f})} \]
|
||||||
|
\end{theorem}
|
||||||
|
}
|
||||||
|
|
||||||
|
\Frame{What is a cdga?}{
|
||||||
|
\begin{definition}
|
||||||
|
a cdga $A$ is
|
||||||
|
\begin{itemize}
|
||||||
|
\item a $\Q$-vector space
|
||||||
|
\item with a multiplication $A \tensor A \tot{\mu} A$
|
||||||
|
\item with a differential $A \tot{d} A$ such that $d^2 = 0$
|
||||||
|
\item with a grading $A = \bigoplus_{n \in \N} A^n$
|
||||||
|
\item it is commutative: $ x y = (-1)^{\deg{x}\cdot\deg{y}} y x $
|
||||||
|
\end{itemize}
|
||||||
|
\end{definition}
|
||||||
|
}
|
||||||
|
|
||||||
|
\Frame{Free cdga's}{
|
||||||
|
As always: there is a free guy: $\Lambda(...)$
|
||||||
|
|
||||||
|
For example
|
||||||
|
\[ \Lambda(t, dt) \text{ with } \deg{t} = 0 \]
|
||||||
|
is just polynomials in $t$, with its differential $dt$
|
||||||
|
}
|
||||||
|
|
||||||
|
\newcommand{\Dict}[1]{
|
||||||
|
\noindent
|
||||||
|
\begin{tabularx}{\textwidth}{ X X }
|
||||||
|
{\bf rational spaces} & {\bf cdga's} \\[1em]
|
||||||
|
#1
|
||||||
|
\end{tabularx}
|
||||||
|
}
|
||||||
|
|
||||||
|
\Frame{Dictionary}{
|
||||||
|
\Dict{
|
||||||
|
$S^n$ with $n$ odd
|
||||||
|
& $\Lambda(e)$ with $\deg{e} = n$ \\[1em]
|
||||||
|
|
||||||
|
$S^n$ with $n$ even
|
||||||
|
& $\Lambda(e, f)$ with $\deg{e} = n$, $\deg{f} = 2n-1$ and $d f = e^2$ \\[1em]
|
||||||
|
|
||||||
|
Eilenberg-MacLane space $K(\Q, n)$
|
||||||
|
& $\Lambda(e)$ with $\deg{e} = n$
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
\Frame{Dictionary}{
|
||||||
|
\Dict{
|
||||||
|
homotopy $$h: X \times I \to Y$$
|
||||||
|
& homotopy $$h: A \to B \tensor \Lambda(t, dt)$$ \\[1em]
|
||||||
|
|
||||||
|
$f: X \to Y$ weak equivalence if $\pi_n(f): \pi_n(X) \iso \pi_n(Y)$
|
||||||
|
& $f: A \to B$ weak equivalence if $H(f): H(X) \iso H(Y)$
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
\end{document}
|
160
presentation/preamble.tex
Normal file
160
presentation/preamble.tex
Normal file
|
@ -0,0 +1,160 @@
|
||||||
|
|
||||||
|
% normally included with amsart
|
||||||
|
% \usepackage{amsmath, amsthm}
|
||||||
|
|
||||||
|
% font with unicode support, does not work with classicthesis
|
||||||
|
% \usepackage{fontspec}
|
||||||
|
|
||||||
|
% clickable tocs
|
||||||
|
\usepackage{hyperref}
|
||||||
|
|
||||||
|
% floating figures
|
||||||
|
\usepackage{float}
|
||||||
|
|
||||||
|
% for multiple cites
|
||||||
|
\usepackage{cite}
|
||||||
|
|
||||||
|
% fancy diagrams
|
||||||
|
\usepackage{tikz}
|
||||||
|
\usetikzlibrary{matrix, arrows, decorations}
|
||||||
|
\tikzset{node distance=2.5em, row sep=2.2em, column sep=2.7em, auto}
|
||||||
|
|
||||||
|
% simple diagrams
|
||||||
|
% \usepackage[all,cmtip]{xy}
|
||||||
|
|
||||||
|
\usepackage{graphicx}
|
||||||
|
% \graphicspath{ {./images/} }
|
||||||
|
\usepackage{caption}
|
||||||
|
\usepackage{subcaption}
|
||||||
|
|
||||||
|
% for the fib arrow
|
||||||
|
\usepackage{amssymb}
|
||||||
|
|
||||||
|
% Some basic objects
|
||||||
|
\newcommand{\N}{\mathbb{N}} % natural numbers
|
||||||
|
\newcommand{\Np}{{\mathbb{N}^{>0}}} % positive numbers
|
||||||
|
\newcommand{\Z}{\mathbb{Z}} % integers
|
||||||
|
\newcommand{\R}{\mathbb{R}} % reals
|
||||||
|
\DeclareRobustCommand{\Q}{\mathbb{Q}} % rationals
|
||||||
|
\renewcommand{\k}{\mathrm{I\!k}} % default ground ring
|
||||||
|
|
||||||
|
% Basic category stuff
|
||||||
|
\newcommand{\cat}[1]{\mathbf{#1}} % the category of ...
|
||||||
|
\newcommand{\opCat}[1]{{#1}^{\text{op}}}% opposite category
|
||||||
|
\newcommand{\Hom}{\mathbf{Hom}}
|
||||||
|
\newcommand{\id}{\mathbf{id}}
|
||||||
|
\newcommand{\Ho}{\cat{Ho}}
|
||||||
|
|
||||||
|
% Categories
|
||||||
|
\newcommand{\Set}{\cat{Set}} % sets
|
||||||
|
\newcommand{\Top}{\cat{Top}} % topological spaces
|
||||||
|
\newcommand{\Grp}{\cat{Grp}} % groups
|
||||||
|
\newcommand{\Ab}{\cat{Ab}} % abelian groups
|
||||||
|
\newcommand{\DELTA}{\boldsymbol{\Delta}}% the simplicial cat
|
||||||
|
\newcommand{\simplicial}[1]{\cat{s{#1}}}% simplicial objects
|
||||||
|
\newcommand{\sSet}{\simplicial{\Set}} % simplicial sets
|
||||||
|
\newcommand{\Mod}[1]{\cat{{#1}Mod}} % modules over a ring
|
||||||
|
\newcommand{\Alg}[1]{\cat{{#1}Alg}} % algebras over a ring
|
||||||
|
\newcommand{\grMod}[1]{\cat{gr\mbox{-}{#1}Mod}} % graded modules over a ring
|
||||||
|
\newcommand{\grAlg}[1]{\cat{gr\mbox{-}{#1}Alg}} % graded algebras over a ring
|
||||||
|
\newcommand{\dgMod}[1]{\cat{dg\mbox{-}{#1}Mod}} % differential graded modules over a ring
|
||||||
|
\newcommand{\dgAlg}[1]{\cat{dg\mbox{-}{#1}Alg}} % differential graded algebras over a ring
|
||||||
|
\newcommand{\Ch}[1]{\cat{Ch_{n\geq0}({#1})}} % chain complexes
|
||||||
|
\newcommand{\CoCh}[1]{\cat{Ch^{n\geq0}({#1})}} % cochain complexes
|
||||||
|
\DeclareRobustCommand{\DGA}{\cat{DGA}} % cochain algebras
|
||||||
|
\DeclareRobustCommand{\CDGA}{\cat{CDGA}} % commutative cochain algebras
|
||||||
|
\DeclareRobustCommand{\AugCDGA}{\cat{CDGA^\ast}}% augmentedcommutative cochain algebras
|
||||||
|
|
||||||
|
\newcommand{\cof}{\hookrightarrow} % cofibration
|
||||||
|
\newcommand{\fib}{\twoheadrightarrow} % fibration
|
||||||
|
\newcommand{\we}{\tot{\simeq}} % weak equivalence
|
||||||
|
|
||||||
|
% for use in xy diagrams
|
||||||
|
\newcommand{\arcof}{\ar@{^{(}->}}
|
||||||
|
\newcommand{\artcof}{\ar@{^{(}->}|\simeq}
|
||||||
|
\newcommand{\arfib}{\ar@{->>}}
|
||||||
|
\newcommand{\artfib}{\ar@{->>}|\simeq}
|
||||||
|
\newcommand{\arwe}{\ar|-\simeq}
|
||||||
|
\newcommand{\ariso}{\ar|-\iso}
|
||||||
|
|
||||||
|
% adjunction symbol for xymatrices
|
||||||
|
\newcommand{\xyadj}{\raisebox{0.2\height}{\scalebox{0.5}{$\perp$}}}
|
||||||
|
|
||||||
|
% pushout and pullback for xymatrices (makes empty arrow with text)
|
||||||
|
\newcommand{\xypo}{\ar@{}[dr]|(.75){\scalebox{1.2}{$\ulcorner$}}}
|
||||||
|
\newcommand{\xypb}{\ar@{}[dr]|(.25){\scalebox{1.2}{$\lrcorner$}}}
|
||||||
|
|
||||||
|
%\newcommand{\leftadj}{\ooalign{\hss\rightleftarrows\hss\cr\bot}}
|
||||||
|
\newcommand{\leftadj}{\rightleftarrows}
|
||||||
|
|
||||||
|
% Notation and operators
|
||||||
|
\newcommand{\I}{\,\mid\,} % seperator in set notation
|
||||||
|
\newcommand{\del}{\partial} % boundary
|
||||||
|
\newcommand{\iso}{\cong} % isomorphic
|
||||||
|
\newcommand{\eq}{\sim} % homotopic
|
||||||
|
\newcommand{\ison}[1]{\stackrel{(#1)}{\iso}} % isos to refer to
|
||||||
|
\newcommand{\refison}[1]{{\small $(#1)$}} % ref
|
||||||
|
\newcommand{\tot}[1]{\xrightarrow{\,\,{#1}\,\,}} % arrow with name
|
||||||
|
\newcommand{\toti}[1]{\xleftarrow{\,\,{#1}\,\,}} % left arrow with name
|
||||||
|
\newcommand{\mapstot}[1]{\xmapsto{\,\,{#1}\,\,}} % mapsto with name
|
||||||
|
\newcommand{\unit}{\eta}
|
||||||
|
\newcommand{\counit}{\epsilon}
|
||||||
|
\DeclareMathOperator*{\im}{im}
|
||||||
|
\DeclareMathOperator*{\coker}{coker}
|
||||||
|
\DeclareMathOperator*{\colim}{colim}
|
||||||
|
\DeclareMathOperator*{\Tor}{Tor}
|
||||||
|
\DeclareMathOperator*{\Ext}{Ext}
|
||||||
|
\DeclareMathOperator*{\tensor}{\otimes}
|
||||||
|
\DeclareMathOperator*{\bigtensor}{\bigotimes}
|
||||||
|
\renewcommand{\deg}[1]{{|{#1}|}}
|
||||||
|
\newcommand{\Char}[1]{char({#1})}
|
||||||
|
\newcommand{\RH}{\widetilde{H}} % reduced homology
|
||||||
|
\DeclareRobustCommand{\C}{\mathcal{C}} % Serre mod C class
|
||||||
|
\newcommand{\Apl}[0]{{A_{PL}}} % Apl simplicial set of polynomials
|
||||||
|
|
||||||
|
\newcommand{\titleCDGA}{\texorpdfstring{$\CDGA$}{CDGA}}
|
||||||
|
|
||||||
|
% restriction of a function
|
||||||
|
\newcommand\restr[2]{{% we make the whole thing an ordinary symbol
|
||||||
|
\left.\kern-\nulldelimiterspace % automatically resize the bar with \right
|
||||||
|
#1 % the function
|
||||||
|
\vphantom{\big|} % pretend it's a little taller at normal size
|
||||||
|
\right|_{#2} % this is the delimiter
|
||||||
|
}}
|
||||||
|
|
||||||
|
% Todos in the margin
|
||||||
|
\newcommand{\todo}[1]{
|
||||||
|
\addcontentsline{tdo}{todo}{\protect{#1}}
|
||||||
|
$\ast$ \marginpar{\tiny $\ast$ #1}
|
||||||
|
}
|
||||||
|
% Big todos in text
|
||||||
|
\newcommand{\TODO}[1]{
|
||||||
|
\addcontentsline{tdo}{todo}{\protect{#1}}
|
||||||
|
{\tiny $\ast$ #1}
|
||||||
|
}
|
||||||
|
% TODO item, as itemize does not work
|
||||||
|
\newcommand{\titem}[0]{\\-\qquad}
|
||||||
|
% List of todos
|
||||||
|
\makeatletter
|
||||||
|
\newcommand \listoftodos{\section*{Todo list} \@starttoc{tdo}}
|
||||||
|
\newcommand\l@todo[2]{
|
||||||
|
\par\noindent \textit{#2}, \parbox{10cm}{#1}\par
|
||||||
|
}
|
||||||
|
\makeatother
|
||||||
|
|
||||||
|
% simple way to center an image
|
||||||
|
\newcommand{\cimage}[2][]{
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[#1]{#2}
|
||||||
|
\end{center}
|
||||||
|
}
|
||||||
|
|
||||||
|
% simple way to center a diagram
|
||||||
|
\newcommand{\cdiagrambase}[1]{
|
||||||
|
\begin{displaymath}
|
||||||
|
\input{#1}
|
||||||
|
\end{displaymath}
|
||||||
|
}
|
||||||
|
\newcommand{\cdiagram}[1]{
|
||||||
|
\cdiagrambase{diagrams/#1}
|
||||||
|
}
|
Reference in a new issue