Browse Source

Added part about homology. Split tex files.

master
Joshua Moerman 11 years ago
parent
commit
cdd59f9adc
  1. 65
      thesis/1_Algebra.tex
  2. 89
      thesis/2_Model_Cats.tex
  3. 2
      thesis/CDGA_Model.tex
  4. 4
      thesis/preamble.tex
  5. 10
      thesis/thesis.tex

65
thesis/Definitions.tex → thesis/1_Algebra.tex

@ -1,11 +1,11 @@
% -*- root: thesis.tex -*-
\section{Definitions}
\label{sec:definitions}
\subsection{Graded algebra} \section{Differential Graded Algebra}
\label{sec:algebra}
In this section $\k$ will be any commutative ring. We will recap some of the basic definitions of commutative algebra in a graded setting. By \emph{linear}, \emph{module}, \emph{tensor product}, etc \dots we always mean $\k$-linear, $\k$-module, tensor product over $\k$, etc \dots. In this section $\k$ will be any commutative ring. We will recap some of the basic definitions of commutative algebra in a graded setting. By \emph{linear}, \emph{module}, \emph{tensor product}, etc \dots we always mean $\k$-linear, $\k$-module, tensor product over $\k$, etc \dots.
\subsection{Graded algebra}
\begin{definition} \begin{definition}
A \emph{graded module} $M$ is a family of modules $\{M_n\}_{n\in\Z}$. An element $x \in M_n$ is called a \emph{homogeneous element} and said to be of \emph{degree $\deg{x} = n$}. We will often identify $M = \bigoplus_{n \in \Z} M_n$. A \emph{graded module} $M$ is a family of modules $\{M_n\}_{n\in\Z}$. An element $x \in M_n$ is called a \emph{homogeneous element} and said to be of \emph{degree $\deg{x} = n$}. We will often identify $M = \bigoplus_{n \in \Z} M_n$.
\end{definition} \end{definition}
@ -13,7 +13,8 @@ In this section $\k$ will be any commutative ring. We will recap some of the bas
For an ordinary module $M$ we can consider the graded module $M[0]$ \emph{concentrated in degree $0$} defined by setting $M[0]_0 = M$ and $M[0]_n = 0$ for $i \neq 0$. If clear from the context we will denote this graded module by $M$. In particular $\k$ is a graded module concentrated in degree $0$. For an ordinary module $M$ we can consider the graded module $M[0]$ \emph{concentrated in degree $0$} defined by setting $M[0]_0 = M$ and $M[0]_n = 0$ for $i \neq 0$. If clear from the context we will denote this graded module by $M$. In particular $\k$ is a graded module concentrated in degree $0$.
\begin{definition} \begin{definition}
A linear map $f: M \to N$ between graded modules is \emph{graded of degree $p$} if it respects the grading, i.e. $\restr{f}{M_n} : M_n \to N_{n+p}$. A linear map $f: M \to N$ between graded modules is \emph{graded of degree $p$} if it respects the grading and raises the degree by $p$, i.e.
$$ \restr{f}{M_n} : M_n \to N_{n+p}. $$
\end{definition} \end{definition}
\begin{definition} \begin{definition}
@ -23,9 +24,7 @@ For an ordinary module $M$ we can consider the graded module $M[0]$ \emph{concen
Note that not all linear maps can be decomposed into a sum of graded maps, so that $\Hom_{gr}(M, N) \subset \Hom(M, N)$ may be proper for some $M$ and $N$. Note that not all linear maps can be decomposed into a sum of graded maps, so that $\Hom_{gr}(M, N) \subset \Hom(M, N)$ may be proper for some $M$ and $N$.
Recall that the tensor product of modules distributes over direct sums. So if $M = \bigoplus_{n \in \Z} M_n$ and $N = \bigoplus_{n \in \Z} N_n$, then Recall that the tensor product of modules distributes over direct sums. This defines a natural grading on the ordinary tensor product.
$$ M \tensor N \iso \bigoplus_{n \in Z} \bigoplus_{m \in Z} M_m \tensor N_n \iso \bigoplus_{n \in Z} \bigoplus_{i + j = n} M_i \tensor N_j. $$
This defines a natural grading on the tensor product.
\begin{definition} \begin{definition}
The graded tensor product is defined as: The graded tensor product is defined as:
@ -42,7 +41,7 @@ The graded modules together with graded maps of degree $0$ form the category $\g
A map between two graded algebra will be called a \emph{graded algebra map} if the map is compatible with the multiplication and unit. Such a map is necessarily of degree $0$. A map between two graded algebra will be called a \emph{graded algebra map} if the map is compatible with the multiplication and unit. Such a map is necessarily of degree $0$.
\end{definition} \end{definition}
Again these objects form a category, denoted as $\grAlg{\k}$. Again these objects and maps form a category, denoted as $\grAlg{\k}$.
\begin{definition} \begin{definition}
A graded algebra $A$ is \emph{commutative} if for all $x, y \in A$ A graded algebra $A$ is \emph{commutative} if for all $x, y \in A$
@ -74,38 +73,26 @@ It is not hard to see that this definition precisely defines the monoidal object
Let $M$ be a DGA, just as before $M$ is called a \emph{chain algebras} if $M_i = 0$ for $i < 0$. Similarly if $M^i = 0$ for all $i < 0$, then $M$ is a \emph{cochain algebra}. Let $M$ be a DGA, just as before $M$ is called a \emph{chain algebras} if $M_i = 0$ for $i < 0$. Similarly if $M^i = 0$ for all $i < 0$, then $M$ is a \emph{cochain algebra}.
\subsection{Model categories} \subsection{Homology}
\newcommand{\W}{\mathfrak{W}} Whenever we have a differential graded module we have $d \circ d = 0$, or put in other words: the image of $d$ is a submodule of the kernel of $d$. The quotient of the two graded modules will be of interest.
\newcommand{\Fib}{\mathfrak{Fib}}
\newcommand{\Cof}{\mathfrak{Cof}}
\begin{definition} \begin{definition}
A \emph{model category} is a category $\cat{C}$ together with three subcategories: Given a differential graded modules $(M, d)$ we define the \emph{homology} of $M$ as: $H(M, d) = \ker(d) / \im(d)$.
\begin{itemize} It is naturally graded as follows:
\item the class of weak equivalences $\W$, $$ H(M, d)_i = H_i(M, d) = \ker(\restr{d}{M_i}) / d(M_{i+1}). $$
\item the class of fibrations $\Fib$ and If $d$ has degree $+1$ we define the \emph{cohomology} as:
\item the class of cofibrations $\Cof$, $$ H(M, d)^i = H^i(M, d) = \ker(\restr{d}{M^i}) / d(M^{i-1}). $$
\end{itemize}
such that the following five axioms hold:
\begin{itemize}
\item[MC1] All finite limits and colimits exist in $\cat{C}$.
\item[MC2] If $f$, $g$ and $fg$ are maps such that two of them are weak equivalences, then so it the third. This is called the \emph{2-out-of-3} property.
\item[MC3] All three classes of maps are closed under retracts\todo{Either draw the diagram or define a retract earlier}.
\item[MC4] In any commuting square as follows where $i \in \Cof$ and $p \in \Fib$, there exist a lift if either
\begin{itemize}
\item[a)] $i \in \W$ or
\item[b)] $p \in \W$.
\end{itemize}
\todo{insert diagram}
\item[MC5] Any map $f : A \to B$ can be factored as $f = pi$, where either
\begin{itemize}
\item[a)] $i \in \Cof \cap \W$ and $p \in \Fib$ or
\item[b)] $i \in \Cof$ and $p \in \Fib \cap \W$.
\end{itemize}
\end{itemize}
\end{definition} \end{definition}
\todo{define notation $\cof$ $\fib$} For differential graded algebras we can consider the (co)homology by forgetting the multiplicative structure. However this multiplication will actually pass to (co)homology:
\todo{define (co)fibrant objects}
\todo{maybe some basic propositions} \begin{lemma}
Let $(A, d)$ be a differential graded algebra. The kernel $\ker(d)$ is a subalgebra of $A$ and the image $d(A)$ is an ideal, so that the quotient
$$ H(A) = \ker(d) / \im(d) $$
is a graded algebra.
\end{lemma}
\begin{proof}
\todo{}
\end{proof}

89
thesis/2_Model_Cats.tex

@ -0,0 +1,89 @@
\section{Model categories}
\label{sec:model_cats}
\newcommand{\W}{\mathfrak{W}}
\newcommand{\Fib}{\mathfrak{Fib}}
\newcommand{\Cof}{\mathfrak{Cof}}
\begin{definition}
A \emph{model category} is a category $\cat{C}$ together with three subcategories:
\begin{itemize}
\item the class of weak equivalences $\W$,
\item the class of fibrations $\Fib$ and
\item the class of cofibrations $\Cof$,
\end{itemize}
such that the following five axioms hold:
\begin{itemize}
\item[MC1] All finite limits and colimits exist in $\cat{C}$.
\item[MC2] If $f$, $g$ and $fg$ are maps such that two of them are weak equivalences, then so it the third. This is called the \emph{2-out-of-3} property.
\item[MC3] All three classes of maps are closed under retracts\todo{Either draw the diagram or define a retract earlier}.
\item[MC4] In any commuting square as follows where $i \in \Cof$ and $p \in \Fib$,
\begin{center}
\begin{tikzpicture}
\matrix (m) [matrix of math nodes]{
A & X \\
B & Y \\
};
\path[->] (m-1-1) edge (m-1-2);
\path[->] (m-2-1) edge (m-2-2);
\path[->] (m-1-1) edge node[auto] {$i$} (m-2-1);
\path[->] (m-1-2) edge node[auto] {$p$} (m-2-2);
\end{tikzpicture}
\end{center}
there exist a lift $h: B \to Y$ if either
\begin{itemize}
\item[a)] $i \in \W$ or
\item[b)] $p \in \W$.
\end{itemize}
\item[MC5] Any map $f : A \to B$ can be factored in two ways:
\begin{itemize}
\item[a)] as $f = pi$, where $i \in \Cof \cap \W$ and $p \in \Fib$ and
\item[b)] as $f = pi$, where $i \in \Cof$ and $p \in \Fib \cap \W$.
\end{itemize}
\end{itemize}
\end{definition}
\begin{notation} For brevity
\begin{itemize}
\item we write $f: A \fib B$ when $f$ is a fibration,
\item we write $f: A \cof B$ when $f$ is a cofibration and
\item we write $f: A \we B$ when $f$ is a weak equivalence.
\end{itemize}
\end{notation}
\begin{definition}
An object $A$ in a model category $\cat{C}$ will be called \emph{fibrant} if $A \to \cat{1}$ is a fibration and \emph{cofibrant} if $\cat{0} \to A$ is a cofibration.
\end{definition}
Note that axiom [MC5a] allows us to replace any object $X$ with a weakly equivalent fibrant object $X^{fib}$ and a weakly equivalent cofibrant object $X^{cof}$, as seen in the following diagram:
\begin{center}
\begin{tikzpicture}
\matrix (m) [matrix of math nodes]{
\cat{0} & & X \\
& X^{cof} & \\
};
\path[->] (m-1-1) edge (m-1-3);
\path[right hook->] (m-1-1) edge (m-2-2);
\path[->>] (m-2-2) edge node[auto] {$ \simeq $} (m-1-3);
\end{tikzpicture}\quad
\begin{tikzpicture}
\matrix (m) [matrix of math nodes]{
X & & \cat{1} \\
& X^{fib} & \\
};
\path[->] (m-1-1) edge (m-1-3);
\path[right hook->] (m-1-1) edge node[auto] {$ \simeq $} (m-2-2);
\path[->>] (m-2-2) edge (m-1-3);
\end{tikzpicture}
\end{center}
\todo{maybe some basic propositions}

2
thesis/CDGA_Model.tex

@ -1,4 +1,4 @@
% -*- root: thesis.tex -*-
\section{Model structure on $\CDGA_\k$} \section{Model structure on $\CDGA_\k$}
In this section we will define a model structure on CDGAs over a field $\k$ \todo{Can $\k$ be a c. ring here?}, where the weak equivalences are quasi isomorphisms and fibrations are surjective maps. The cofibrations are defined to be the maps with a left lifting property with respect to trivial fibrations. In this section we will define a model structure on CDGAs over a field $\k$ \todo{Can $\k$ be a c. ring here?}, where the weak equivalences are quasi isomorphisms and fibrations are surjective maps. The cofibrations are defined to be the maps with a left lifting property with respect to trivial fibrations.

4
thesis/preamble.tex

@ -1,4 +1,4 @@
% -*- root: thesis.tex -*-
% clickable tocs % clickable tocs
\usepackage{hyperref} \usepackage{hyperref}
@ -62,6 +62,7 @@
\newcommand{\eq}{\sim} % homotopic \newcommand{\eq}{\sim} % homotopic
\newcommand{\tot}[1]{\xrightarrow{\,\,{#1}\,\,}} % arrow with name \newcommand{\tot}[1]{\xrightarrow{\,\,{#1}\,\,}} % arrow with name
\newcommand{\mapstot}[1]{\xmapsto{\,\,{#1}\,\,}} % mapsto with name \newcommand{\mapstot}[1]{\xmapsto{\,\,{#1}\,\,}} % mapsto with name
\DeclareMathOperator*{\im}{im}
\DeclareMathOperator*{\colim}{colim} \DeclareMathOperator*{\colim}{colim}
\DeclareMathOperator*{\tensor}{\otimes} \DeclareMathOperator*{\tensor}{\otimes}
\DeclareMathOperator*{\bigtensor}{\bigotimes} \DeclareMathOperator*{\bigtensor}{\bigotimes}
@ -89,6 +90,7 @@
\theoremstyle{definition} \theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition} \newtheorem{definition}[theorem]{Definition}
\newtheorem{notation}[theorem]{Notation}
\newtheorem{example}[theorem]{Example} \newtheorem{example}[theorem]{Example}
% headings for a table % headings for a table

10
thesis/thesis.tex

@ -11,7 +11,15 @@
\maketitle \maketitle
\tableofcontents \tableofcontents
\input{Definitions} \newpage Some general notation: \todo{leave this out, or define somewhere else?}
\begin{itemize}
\item $\cat{0}$ (resp. $\cat{1}$) will denote the initial (resp. final) objects in a category.
\item $\Hom_\cat{C}(A, B)$ will denote the set of maps from $A$ to $B$ in the category $\cat{C}$.
\end{itemize}
\newpage
\input{1_Algebra} \newpage
\input{2_Model_Cats} \newpage
\input{CDGA_Model} \newpage \input{CDGA_Model} \newpage
\nocite{*} \nocite{*}