Joshua Moerman
11 years ago
5 changed files with 128 additions and 42 deletions
@ -0,0 +1,89 @@ |
|||
|
|||
\section{Model categories} |
|||
\label{sec:model_cats} |
|||
|
|||
\newcommand{\W}{\mathfrak{W}} |
|||
\newcommand{\Fib}{\mathfrak{Fib}} |
|||
\newcommand{\Cof}{\mathfrak{Cof}} |
|||
|
|||
\begin{definition} |
|||
A \emph{model category} is a category $\cat{C}$ together with three subcategories: |
|||
\begin{itemize} |
|||
\item the class of weak equivalences $\W$, |
|||
\item the class of fibrations $\Fib$ and |
|||
\item the class of cofibrations $\Cof$, |
|||
\end{itemize} |
|||
such that the following five axioms hold: |
|||
\begin{itemize} |
|||
\item[MC1] All finite limits and colimits exist in $\cat{C}$. |
|||
\item[MC2] If $f$, $g$ and $fg$ are maps such that two of them are weak equivalences, then so it the third. This is called the \emph{2-out-of-3} property. |
|||
\item[MC3] All three classes of maps are closed under retracts\todo{Either draw the diagram or define a retract earlier}. |
|||
\item[MC4] In any commuting square as follows where $i \in \Cof$ and $p \in \Fib$, |
|||
\begin{center} |
|||
\begin{tikzpicture} |
|||
\matrix (m) [matrix of math nodes]{ |
|||
A & X \\ |
|||
B & Y \\ |
|||
}; |
|||
|
|||
\path[->] (m-1-1) edge (m-1-2); |
|||
\path[->] (m-2-1) edge (m-2-2); |
|||
\path[->] (m-1-1) edge node[auto] {$i$} (m-2-1); |
|||
\path[->] (m-1-2) edge node[auto] {$p$} (m-2-2); |
|||
|
|||
\end{tikzpicture} |
|||
\end{center} |
|||
|
|||
there exist a lift $h: B \to Y$ if either |
|||
\begin{itemize} |
|||
\item[a)] $i \in \W$ or |
|||
\item[b)] $p \in \W$. |
|||
\end{itemize} |
|||
\item[MC5] Any map $f : A \to B$ can be factored in two ways: |
|||
\begin{itemize} |
|||
\item[a)] as $f = pi$, where $i \in \Cof \cap \W$ and $p \in \Fib$ and |
|||
\item[b)] as $f = pi$, where $i \in \Cof$ and $p \in \Fib \cap \W$. |
|||
\end{itemize} |
|||
\end{itemize} |
|||
\end{definition} |
|||
|
|||
\begin{notation} For brevity |
|||
\begin{itemize} |
|||
\item we write $f: A \fib B$ when $f$ is a fibration, |
|||
\item we write $f: A \cof B$ when $f$ is a cofibration and |
|||
\item we write $f: A \we B$ when $f$ is a weak equivalence. |
|||
\end{itemize} |
|||
\end{notation} |
|||
|
|||
\begin{definition} |
|||
An object $A$ in a model category $\cat{C}$ will be called \emph{fibrant} if $A \to \cat{1}$ is a fibration and \emph{cofibrant} if $\cat{0} \to A$ is a cofibration. |
|||
\end{definition} |
|||
|
|||
Note that axiom [MC5a] allows us to replace any object $X$ with a weakly equivalent fibrant object $X^{fib}$ and a weakly equivalent cofibrant object $X^{cof}$, as seen in the following diagram: |
|||
|
|||
\begin{center} |
|||
\begin{tikzpicture} |
|||
\matrix (m) [matrix of math nodes]{ |
|||
\cat{0} & & X \\ |
|||
& X^{cof} & \\ |
|||
}; |
|||
|
|||
\path[->] (m-1-1) edge (m-1-3); |
|||
\path[right hook->] (m-1-1) edge (m-2-2); |
|||
\path[->>] (m-2-2) edge node[auto] {$ \simeq $} (m-1-3); |
|||
|
|||
\end{tikzpicture}\quad |
|||
\begin{tikzpicture} |
|||
\matrix (m) [matrix of math nodes]{ |
|||
X & & \cat{1} \\ |
|||
& X^{fib} & \\ |
|||
}; |
|||
|
|||
\path[->] (m-1-1) edge (m-1-3); |
|||
\path[right hook->] (m-1-1) edge node[auto] {$ \simeq $} (m-2-2); |
|||
\path[->>] (m-2-2) edge (m-1-3); |
|||
|
|||
\end{tikzpicture} |
|||
\end{center} |
|||
|
|||
\todo{maybe some basic propositions} |
Reference in new issue