\documentclass[14pt]{beamer} \definecolor{todocolor}{rgb}{1, 0.3, 0.2} \newcommand{\td}[1]{\colorbox{todocolor}{*\footnote{TODO: #1}}} \input{preamble} \usepackage{tabularx} \renewcommand{\tabularxcolumn}[1]{p{#1}} \graphicspath{ {../presentation/images/} } \newcommand{\Frame}[2]{ \begin{frame}{#1}#2\end{frame} } \title{Rational Homotopy Theory} \author{Joshua Moerman} \institute[Radboud Universiteit Nijmegen]{Supervisor: Ieke Moerdijk} \date{} \begin{document} \AtBeginSection[]{ \begin{frame} \tableofcontents[currentsection] \end{frame} } \Frame{}{ \titlepage } \section{Introduction to homotopy theory} \Frame{Homotopy theory}{ \begin{center} Study of spaces or shapes \\ with ``weak equivalences'' \bigskip \includegraphics{weak_eqs2} \end{center} } \Frame{Important spaces}{ \begin{align*} S^1 &= \raisebox{-0.4\height}{\includegraphics{spheres1}} \\[1em] S^2 &= \raisebox{-0.4\height}{\includegraphics{spheres2}} \\[1em] S^3 &= \>\> \cdots \\[1em] &\>\> \vdots \end{align*} } \Frame{Important tool}{ Fundamental group: \[ \pi_1(X) = \text{maps } S^1 \to X \text{ up to homotopy} \] \bigskip \includegraphics{fundamental_group} } \Frame{Important tools}{ Homotopy groups: \begin{align*} \pi_1(X) &= \text{maps } S^1 \to X \text{ up to homotopy} \\[1em] \pi_2(X) &= \text{maps } S^2 \to X \text{ up to homotopy} \\[1em] \pi_3(X) &= \text{maps } S^3 \to X \text{ up to homotopy} \\[1em] &\>\>\vdots \end{align*} } \Frame{Torsion-free}{ Serre proved in 1950s: \begin{align*} \text{odd } k: \quad \pi_n(S^k) \tensor \Q &= \begin{cases} \Q &\text{ if } n = k \\ 0 &\text{ otherwise } \end{cases} \\[1em] \text{even } k: \quad \pi_n(S^k) \tensor \Q &= \begin{cases} \Q &\text{ if } n = k, 2k-1 \\ 0 &\text{ otherwise } \end{cases} \\ \end{align*} } \section{Rational homotopy theory} \Frame{Rational homotopy theory}{ \begin{center} Study of spaces\\ with ``rational equivalences'' \\ and ``rational homotopy groups'' \pause \bigskip or \bigskip Study of \emph{rational} spaces \\ with weak equivalences \\ and ordinary homotopy groups \end{center} } \Frame{Rational spaces}{ $X$ is \emph{rational} if $\pi_n(X)$ is a $\Q$-vector space \bigskip \[ S^1_\Q = \raisebox{-0.55\height}{\includegraphics{infinite_telescope}} \] } \section{The main equivalence} \Frame{Main equivalence}{ \begin{theorem} \begin{center} Homotopy theory of rational spaces \\ = \\ Homotopy theory of commutative differential graded algebras \end{center} \end{theorem} } \Frame{Main equivalence (precise version)}{ \begin{theorem} \[ \Ho(\Top_{\Q, 1, f}) \simeq \opCat{\Ho(\CDGA_{\Q, 1, f})} \] \end{theorem} } \Frame{What is a cdga?}{ \begin{definition} a cdga $A$ is \begin{itemize} \item a $\Q$-vector space \item with a multiplication $A \tensor A \tot{\mu} A$ \item with a differential $A \tot{d} A$ such that $d^2 = 0$ \item with a grading $A = \bigoplus_{n \in \N} A^n$ \item it is commutative: $ x y = (-1)^{\deg{x}\cdot\deg{y}} y x $ \end{itemize} \end{definition} } \Frame{Free cdga's}{ As always: there is a free guy: $\Lambda(...)$ For example \[ \Lambda(t, dt) \text{ with } \deg{t} = 0 \] is just polynomials in $t$, with its differential $dt$ } \newcommand{\Dict}[1]{ \noindent \begin{tabularx}{\textwidth}{ X X } {\bf rational spaces} & {\bf cdga's} \\[1em] #1 \end{tabularx} } \Frame{Dictionary}{ \Dict{ $S^n_\Q$ with $n$ odd & $\Lambda(e)$ with $\deg{e} = n$ \\[1em] $S^n_\Q$ with $n$ even & $\Lambda(e, f)$ with $\deg{e} = n$, $\deg{f} = 2n-1$ and $d f = e^2$ \\[1em] Eilenberg-MacLane space $K(\Q, n)$ & $\Lambda(e)$ with $\deg{e} = n$ } } \Frame{Dictionary}{ \Dict{ weak equivalence $$\pi_n(f): \pi_n(X) \iso \pi_n(Y)$$ & weak equivalence $$H(f): H(X) \iso H(Y)$$ \\[1em] homotopy $$h: X \times I \to Y$$ & homotopy $$h: A \to B \tensor \Lambda(t, dt)$$ } } \Frame{Dictionary}{ \Dict{ $$ \pi_n(X) = [S^n, X] $$ & {\begin{align*} \pi^n(A) &= H(Q(A)) \\ \pi^n(A)^\ast &\iso [A, \Lambda(e)] \\ &\text{or } [A, \Lambda(e, f)] \end{align*}} \\[1em] Long exact sequence of a fibration & Long exact sequence of a cofibration \\[1em] } } \Frame{Dictionary}{ \bf topological $n$-simplex \[ \Delta^n = \left\{ (x_0, \ldots, x_n) \in \R^{n+1} \,|\, \sum x_i = 1, x_i \geq 0 \right\} \] \bigskip \bf cdga $n$-simplex \[ \Delta_n = \frac{\Lambda(x_0, \ldots x_n, dx_0, \ldots, dx_n)}{\langle \sum x_i - 1, \sum dx_i \rangle}, \quad \deg{x_i}=0 \] } \Frame{Construction}{ \begin{center} \begin{tikzcd}[column sep=huge, row sep=huge, ampersand replacement=\&] \DELTA \arrow[d, "y"] \arrow[rd, "\Delta_{(-)}"] \& \\ \sSet \arrow[r, dashed, shift left = 1ex, "A"] \& \opCat{\CDGA_\Q} \arrow[l, dashed, shift left = 1ex] \end{tikzcd} \end{center} \bigskip \pause \[ A(X) = \Hom_\sSet(X, \Delta_{(-)}) \] } \end{document}