\section{Model categories} \label{sec:model_cats} \newcommand{\W}{\mathfrak{W}} \newcommand{\Fib}{\mathfrak{Fib}} \newcommand{\Cof}{\mathfrak{Cof}} \begin{definition} A \emph{(closed) model category} is a category $\cat{C}$ together with three subcategories: \begin{itemize} \item the class of weak equivalences $\W$, \item the class of fibrations $\Fib$ and \item the class of cofibrations $\Cof$, \end{itemize} such that the following five axioms hold: \begin{itemize} \item[MC1] All finite limits and colimits exist in $\cat{C}$. \item[MC2] If $f$, $g$ and $fg$ are maps such that two of them are weak equivalences, then so it the third. This is called the \emph{2-out-of-3} property. \item[MC3] All three classes of maps are closed under retracts\todo{Either draw the diagram or define a retract earlier}. \item[MC4] In any commuting square as follows where $i \in \Cof$ and $p \in \Fib$, \begin{center} \begin{tikzpicture} \matrix (m) [matrix of math nodes]{ A & X \\ B & Y \\ }; \path[->] (m-1-1) edge (m-1-2); \path[->] (m-2-1) edge (m-2-2); \path[->] (m-1-1) edge node[auto] {$i$} (m-2-1); \path[->] (m-1-2) edge node[auto] {$p$} (m-2-2); \end{tikzpicture} \end{center} there exist a lift $h: B \to Y$ if either \begin{itemize} \item[a)] $i \in \W$ or \item[b)] $p \in \W$. \end{itemize} \item[MC5] Any map $f : A \to B$ can be factored in two ways: \begin{itemize} \item[a)] as $f = pi$, where $i \in \Cof \cap \W$ and $p \in \Fib$ and \item[b)] as $f = pi$, where $i \in \Cof$ and $p \in \Fib \cap \W$. \end{itemize} \end{itemize} \end{definition} \begin{notation} For brevity \begin{itemize} \item we write $f: A \fib B$ when $f$ is a fibration, \item we write $f: A \cof B$ when $f$ is a cofibration and \item we write $f: A \we B$ when $f$ is a weak equivalence. \end{itemize} \end{notation} \begin{definition} An object $A$ in a model category $\cat{C}$ will be called \emph{fibrant} if $A \to \cat{1}$ is a fibration and \emph{cofibrant} if $\cat{0} \to A$ is a cofibration. \end{definition} Note that axiom [MC5a] allows us to replace any object $X$ with a weakly equivalent fibrant object $X^{fib}$ and by [MC5b] by a weakly equivalent cofibrant object $X^{cof}$, as seen in the following diagram: \begin{center} \begin{tikzpicture} \matrix (m) [matrix of math nodes]{ \cat{0} & & X \\ & X^{cof} & \\ }; \path[->] (m-1-1) edge (m-1-3); \path[right hook->] (m-1-1) edge (m-2-2); \path[->>] (m-2-2) edge node[auto] {$ \simeq $} (m-1-3); \end{tikzpicture}\quad \begin{tikzpicture} \matrix (m) [matrix of math nodes]{ X & & \cat{1} \\ & X^{fib} & \\ }; \path[->] (m-1-1) edge (m-1-3); \path[right hook->] (m-1-1) edge node[auto] {$ \simeq $} (m-2-2); \path[->>] (m-2-2) edge (m-1-3); \end{tikzpicture} \end{center} \TODO{Maybe some basic propositions (refer to Dwyer \& Spalinski): \titem Over/under category (or simply pointed objects) \titem If a map has LLP/RLP w.r.t. fib/cof, it is a cof/fib \titem Fibs are preserved under pullbacks/limits \titem Cofibrantly generated mod. cats. \titem Small object argument } \todo{Define homotopy category} \subsection{Quillen pairs} In order to relate model categories and their associated homotopy categories we need a notion of maps between them. We want the maps such that they induce maps on the homotopy categories. \todo{Definition etc}