Master thesis on Rational Homotopy Theory https://github.com/Jaxan/Rational-Homotopy-Theory
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
 
 

101 lines
3.4 KiB

\section{Model categories}
\label{sec:model_cats}
\newcommand{\W}{\mathfrak{W}}
\newcommand{\Fib}{\mathfrak{Fib}}
\newcommand{\Cof}{\mathfrak{Cof}}
\begin{definition}
A \emph{(closed) model category} is a category $\cat{C}$ together with three subcategories:
\begin{itemize}
\item the class of weak equivalences $\W$,
\item the class of fibrations $\Fib$ and
\item the class of cofibrations $\Cof$,
\end{itemize}
such that the following five axioms hold:
\begin{itemize}
\item[MC1] All finite limits and colimits exist in $\cat{C}$.
\item[MC2] If $f$, $g$ and $fg$ are maps such that two of them are weak equivalences, then so it the third. This is called the \emph{2-out-of-3} property.
\item[MC3] All three classes of maps are closed under retracts\todo{Either draw the diagram or define a retract earlier}.
\item[MC4] In any commuting square as follows where $i \in \Cof$ and $p \in \Fib$,
\begin{center}
\begin{tikzpicture}
\matrix (m) [matrix of math nodes]{
A & X \\
B & Y \\
};
\path[->] (m-1-1) edge (m-1-2);
\path[->] (m-2-1) edge (m-2-2);
\path[->] (m-1-1) edge node[auto] {$i$} (m-2-1);
\path[->] (m-1-2) edge node[auto] {$p$} (m-2-2);
\end{tikzpicture}
\end{center}
there exist a lift $h: B \to Y$ if either
\begin{itemize}
\item[a)] $i \in \W$ or
\item[b)] $p \in \W$.
\end{itemize}
\item[MC5] Any map $f : A \to B$ can be factored in two ways:
\begin{itemize}
\item[a)] as $f = pi$, where $i \in \Cof \cap \W$ and $p \in \Fib$ and
\item[b)] as $f = pi$, where $i \in \Cof$ and $p \in \Fib \cap \W$.
\end{itemize}
\end{itemize}
\end{definition}
\begin{notation} For brevity
\begin{itemize}
\item we write $f: A \fib B$ when $f$ is a fibration,
\item we write $f: A \cof B$ when $f$ is a cofibration and
\item we write $f: A \we B$ when $f$ is a weak equivalence.
\end{itemize}
\end{notation}
\begin{definition}
An object $A$ in a model category $\cat{C}$ will be called \emph{fibrant} if $A \to \cat{1}$ is a fibration and \emph{cofibrant} if $\cat{0} \to A$ is a cofibration.
\end{definition}
Note that axiom [MC5a] allows us to replace any object $X$ with a weakly equivalent fibrant object $X^{fib}$ and by [MC5b] by a weakly equivalent cofibrant object $X^{cof}$, as seen in the following diagram:
\begin{center}
\begin{tikzpicture}
\matrix (m) [matrix of math nodes]{
\cat{0} & & X \\
& X^{cof} & \\
};
\path[->] (m-1-1) edge (m-1-3);
\path[right hook->] (m-1-1) edge (m-2-2);
\path[->>] (m-2-2) edge node[auto] {$ \simeq $} (m-1-3);
\end{tikzpicture}\quad
\begin{tikzpicture}
\matrix (m) [matrix of math nodes]{
X & & \cat{1} \\
& X^{fib} & \\
};
\path[->] (m-1-1) edge (m-1-3);
\path[right hook->] (m-1-1) edge node[auto] {$ \simeq $} (m-2-2);
\path[->>] (m-2-2) edge (m-1-3);
\end{tikzpicture}
\end{center}
\TODO{Maybe some basic propositions (refer to Dwyer \& Spalinski):
\titem Over/under category (or simply pointed objects)
\titem If a map has LLP/RLP w.r.t. fib/cof, it is a cof/fib
\titem Fibs are preserved under pullbacks/limits
\titem Cofibrantly generated mod. cats.
\titem Small object argument
}
\todo{Define homotopy category}
\subsection{Quillen pairs}
In order to relate model categories and their associated homotopy categories we need a notion of maps between them. We want the maps such that they induce maps on the homotopy categories.
\todo{Definition etc}