mirror of
https://github.com/Jaxan/nominal-lstar.git
synced 2025-04-27 06:37:45 +02:00
Adds a class for tables
This commit is contained in:
parent
9a75d5f296
commit
c2b2907555
4 changed files with 142 additions and 76 deletions
|
@ -11,9 +11,7 @@ common stuff
|
|||
ghc-options: -O2 -Wall
|
||||
build-depends:
|
||||
base >= 4.8 && < 5,
|
||||
containers,
|
||||
haskeline,
|
||||
mtl,
|
||||
NLambda >= 1.1
|
||||
|
||||
library
|
||||
|
@ -32,6 +30,7 @@ library
|
|||
Examples.RunningExample,
|
||||
Examples.Stack,
|
||||
ObservationTable,
|
||||
ObservationTableClass,
|
||||
SimpleObservationTable,
|
||||
Teacher,
|
||||
Teachers.Teacher,
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
{-# language PartialTypeSignatures #-}
|
||||
{-# language RecordWildCards #-}
|
||||
{-# OPTIONS_GHC -Wno-partial-type-signatures #-}
|
||||
module Bollig where
|
||||
|
||||
import AbstractLStar
|
||||
import ObservationTableClass
|
||||
import SimpleObservationTable
|
||||
import Teacher
|
||||
|
||||
|
@ -31,55 +31,53 @@ mqToBool teacher words = answer
|
|||
answer = map (setB True) inw `union` map (setB False) outw
|
||||
setB b (w, _) = (w, b)
|
||||
|
||||
tableAt :: NominalType i => BTable i -> [i] -> [i] -> Formula
|
||||
tableAt t s e = singleton True `eq` mapFilter (\(i, o) -> maybeIf ((s ++ e) `eq` i) o) (content t)
|
||||
|
||||
rfsaClosednessTest :: NominalType i => Set (BRow i) -> BTable i -> TestResult i
|
||||
rfsaClosednessTest primesUpp t@Table{..} = case solve (isEmpty defect) of
|
||||
rfsaClosednessTest primesUpp t = case solve (isEmpty defect) of
|
||||
Just True -> Succes
|
||||
Just False -> trace "Not closed" $ Failed defect empty
|
||||
Nothing -> trace "@@@ Unsolved Formula (rfsaClosednessTest) @@@" $
|
||||
Failed defect empty
|
||||
where
|
||||
defect = filter (\ua -> brow t ua `neq` sum (filter (`isSubsetOf` brow t ua) primesUpp)) (rowsExt t)
|
||||
defect = filter (\ua -> row t ua `neq` sum (filter (`isSubsetOf` row t ua) primesUpp)) (rowsExt t)
|
||||
|
||||
rfsaConsistencyTest :: NominalType i => BTable i -> TestResult i
|
||||
rfsaConsistencyTest t@Table{..} = case solve (isEmpty defect) of
|
||||
rfsaConsistencyTest t = case solve (isEmpty defect) of
|
||||
Just True -> Succes
|
||||
Just False -> trace "Not consistent" $ Failed empty defect
|
||||
Nothing -> trace "@@@ Unsolved Formula (rfsaConsistencyTest) @@@" $
|
||||
Failed empty defect
|
||||
where
|
||||
candidates = pairsWithFilter (\u1 u2 -> maybeIf (brow t u2 `isSubsetOf` brow t u1) (u1, u2)) rows rows
|
||||
defect = triplesWithFilter (\(u1, u2) a v -> maybeIf (not (tableAt t (u1 ++ [a]) v) /\ tableAt t (u2 ++ [a]) v) (a:v)) candidates alph columns
|
||||
candidates = pairsWithFilter (\u1 u2 -> maybeIf (row t u2 `isSubsetOf` row t u1) (u1, u2)) (rows t) (rows t)
|
||||
defect = triplesWithFilter (\(u1, u2) a v -> maybeIf (not (tableAt2 (u1 ++ [a]) v) /\ tableAt2 (u2 ++ [a]) v) (a:v)) candidates (alph t) (cols t)
|
||||
tableAt2 s e = singleton True `eq` tableAt t s e
|
||||
|
||||
constructHypothesisBollig :: NominalType i => Set (BRow i) -> BTable i -> Automaton (BRow i) i
|
||||
constructHypothesisBollig primesUpp t@Table{..} = automaton q alph d i f
|
||||
constructHypothesisBollig primesUpp t = automaton q (alph t) d i f
|
||||
where
|
||||
q = primesUpp
|
||||
i = filter (`isSubsetOf` brow t []) q
|
||||
i = filter (`isSubsetOf` rowEps t) q
|
||||
f = filter (`contains` []) q
|
||||
-- TODO: compute indices of primesUpp only once
|
||||
d0 = triplesWithFilter (\s a bs2 -> maybeIf (bs2 `isSubsetOf` brow t (s ++ [a])) (brow t s, a, bs2)) rows alph q
|
||||
d0 = triplesWithFilter (\s a bs2 -> maybeIf (bs2 `isSubsetOf` row t (s ++ [a])) (row t s, a, bs2)) (rows t) (alph t) q
|
||||
d = filter (\(q1, _, _) -> q1 `member` q) d0
|
||||
|
||||
-- Adds all suffixes as columns
|
||||
-- TODO: do actual Rivest and Schapire
|
||||
addCounterExample :: NominalType i => MQ i Bool -> Set [i] -> BTable i -> BTable i
|
||||
addCounterExample mq ces t@Table{..} =
|
||||
addCounterExample mq ces t =
|
||||
let newColumns = sum . map (fromList . tails) $ ces
|
||||
newColumnsRed = newColumns \\ columns
|
||||
newColumnsRed = newColumns \\ cols t
|
||||
in addColumns mq newColumnsRed t
|
||||
|
||||
learnBollig :: (NominalType i, _) => Int -> Int -> Teacher i -> Automaton (BRow i) i
|
||||
learnBollig k n teacher = learnBolligLoop teacher (initialTableSize (mqToBool teacher) (alphabet teacher) k n)
|
||||
learnBollig k n teacher = learnBolligLoop teacher (initialBTableSize (mqToBool teacher) (alphabet teacher) k n)
|
||||
|
||||
learnBolligLoop :: (NominalType i, _) => Teacher i -> BTable i -> Automaton (BRow i) i
|
||||
learnBolligLoop teacher t@Table{..} =
|
||||
learnBolligLoop teacher t =
|
||||
let
|
||||
-- These simplify's do speed up
|
||||
allRowsUpp = simplify $ map (brow t) rows
|
||||
allRows = simplify $ allRowsUpp `union` map (brow t) (rowsExt t)
|
||||
allRowsUpp = simplify $ map (row t) (rows t)
|
||||
allRows = simplify $ allRowsUpp `union` map (row t) (rowsExt t)
|
||||
primesUpp = simplify $ filter (\r -> isNotEmpty r /\ r `neq` sum (filter (`isSubsetOf` r) (allRows \\ orbit [] r))) allRowsUpp
|
||||
|
||||
-- No worry, these are computed lazily
|
||||
|
|
43
src/ObservationTableClass.hs
Normal file
43
src/ObservationTableClass.hs
Normal file
|
@ -0,0 +1,43 @@
|
|||
{-# language TypeFamilies #-}
|
||||
{-# language FunctionalDependencies #-}
|
||||
|
||||
module ObservationTableClass where
|
||||
|
||||
import NLambda
|
||||
import Prelude ((++))
|
||||
|
||||
-- Words are indices to our table
|
||||
type RowIndex i = [i]
|
||||
type ColumnIndex i = [i]
|
||||
|
||||
-- Membership queries (TODO: move to Teacher)
|
||||
type MQ i o = Set [i] -> Set ([i], o)
|
||||
|
||||
-- This is a fat class, so that instances could give more efficient implementations
|
||||
class (NominalType table, NominalType i, NominalType o) => ObservationTable table i o | table -> i o where
|
||||
-- The type of data in a row is determined by the table
|
||||
type Row table :: *
|
||||
|
||||
-- getters
|
||||
rows :: table -> Set (RowIndex i)
|
||||
cols :: table -> Set (ColumnIndex i)
|
||||
alph :: table -> Set i
|
||||
row :: table -> RowIndex i -> Row table
|
||||
|
||||
-- perhaps not needed
|
||||
tableAt :: table -> RowIndex i -> ColumnIndex i -> Set o
|
||||
|
||||
-- compound getters
|
||||
rowsExt :: table -> Set (RowIndex i)
|
||||
colsExt :: table -> Set (ColumnIndex i)
|
||||
|
||||
rowEps :: table -> Row table
|
||||
|
||||
-- updaters
|
||||
addRows :: MQ i o -> Set (RowIndex i) -> table -> table
|
||||
addColumns :: MQ i o -> Set (ColumnIndex i) -> table -> table
|
||||
|
||||
-- default implementations
|
||||
rowsExt t = pairsWith (\r a -> r ++ [a]) (rows t) (alph t)
|
||||
colsExt t = pairsWith (:) (alph t) (cols t)
|
||||
rowEps t = row t []
|
|
@ -1,14 +1,22 @@
|
|||
{-# language DeriveAnyClass #-}
|
||||
{-# language DeriveGeneric #-}
|
||||
{-# language RecordWildCards #-}
|
||||
{-# language FlexibleInstances #-}
|
||||
{-# language MultiParamTypeClasses #-}
|
||||
{-# language TypeFamilies #-}
|
||||
{-# language PartialTypeSignatures #-}
|
||||
{-# OPTIONS_GHC -Wno-partial-type-signatures #-}
|
||||
|
||||
module SimpleObservationTable where
|
||||
|
||||
import ObservationTableClass
|
||||
|
||||
import NLambda hiding (fromJust)
|
||||
|
||||
import GHC.Generics (Generic)
|
||||
import Prelude (Bool (..), Eq, Int, Ord, Show (..), fst, (++))
|
||||
import Prelude (Bool (..), Eq, Int, Ord, Show (..), fst, (++), (.))
|
||||
import qualified Prelude ()
|
||||
import Data.Coerce (coerce)
|
||||
|
||||
|
||||
-- We represent functions as their graphs
|
||||
|
@ -18,55 +26,88 @@ type Fun i o = Set (i, o)
|
|||
dom :: (NominalType i, NominalType o) => Fun i o -> Set i
|
||||
dom = map fst
|
||||
|
||||
-- Words are indices to our table
|
||||
type RowIndex i = [i]
|
||||
type ColumnIndex i = [i]
|
||||
|
||||
-- A table is nothing more than a part of the language.
|
||||
-- Invariant: content is always defined for elements in
|
||||
-- `rows * columns` and `rows * alph * columns`.
|
||||
data Table i o = Table
|
||||
{ content :: Fun [i] o
|
||||
, rows :: Set (RowIndex i)
|
||||
, columns :: Set (ColumnIndex i)
|
||||
, alph :: Set i
|
||||
, rowIndices :: Set (RowIndex i)
|
||||
, colIndices :: Set (ColumnIndex i)
|
||||
, aa :: Set i
|
||||
}
|
||||
deriving (Show, Ord, Eq, Generic, NominalType, Conditional, Contextual)
|
||||
|
||||
rowsExt :: (NominalType i, NominalType o) => Table i o -> Set (RowIndex i)
|
||||
rowsExt Table{..} = pairsWith (\r a -> r ++ [a]) rows alph
|
||||
instance (NominalType i, NominalType o) => ObservationTable (Table i o) i o where
|
||||
type Row (Table i o) = Fun [i] o
|
||||
rows = rowIndices
|
||||
cols = colIndices
|
||||
alph = aa
|
||||
row Table{..} r = pairsWithFilter (\e (a, b) -> maybeIf (a `eq` (r ++ e)) (e, b)) colIndices content
|
||||
tableAt Table{..} r c = mapFilter (\(i, o) -> maybeIf ((r ++ c) `eq` i) o) content
|
||||
|
||||
columnsExt :: (NominalType i, NominalType o) => Table i o -> Set (RowIndex i)
|
||||
columnsExt Table{..} = pairsWith (:) alph columns
|
||||
-- Assumption: newRows is disjoint from rows (for efficiency)
|
||||
addRows mq newRows t@Table{..} =
|
||||
t { content = content `union` newContent
|
||||
, rowIndices = rowIndices `union` newRows
|
||||
}
|
||||
where
|
||||
newRowsExt = pairsWith (\r a -> r ++ [a]) newRows aa
|
||||
newPart = pairsWith (++) (newRows `union` newRowsExt) colIndices
|
||||
newPartRed = newPart \\ dom content
|
||||
newContent = mq newPartRed
|
||||
|
||||
-- I could make a more specific implementation for booleans
|
||||
-- But for now we reuse the above.
|
||||
type BTable i = Table i Bool
|
||||
|
||||
-- A row is the data in a table, i.e. a function from columns to the output
|
||||
type Row i o = Fun [i] o
|
||||
|
||||
row :: (NominalType i, NominalType o) => Table i o -> RowIndex i -> Row i o
|
||||
row Table{..} r = pairsWithFilter (\e (a, b) -> maybeIf (a `eq` (r ++ e)) (e, b)) columns content
|
||||
|
||||
-- Special case of a boolean: functions to Booleans are subsets
|
||||
type BRow i = Set [i]
|
||||
|
||||
-- TODO: slightly inefficient
|
||||
brow :: NominalType i => BTable i -> RowIndex i -> BRow i
|
||||
brow Table{..} r = let lang = mapFilter (\(i, o) -> maybeIf (fromBool o) i) content
|
||||
in filter (\a -> lang `contains` (r ++ a)) columns
|
||||
-- Assumption: newColumns is disjoint from columns (for efficiency)
|
||||
addColumns mq newColumns t@Table{..} =
|
||||
t { content = content `union` newContent
|
||||
, colIndices = colIndices `union` newColumns
|
||||
}
|
||||
where
|
||||
newColumnsExt = pairsWith (:) aa newColumns
|
||||
newPart = pairsWith (++) rowIndices (newColumns `union` newColumnsExt)
|
||||
newPartRed = newPart \\ dom content
|
||||
newContent = mq newPartRed
|
||||
|
||||
|
||||
-- Membership queries (TODO: move to Teacher)
|
||||
type MQ i o = Set [i] -> Set ([i], o)
|
||||
-- I could make a more specific implementation for booleans.
|
||||
-- But for now we reuse the above, and do minor optimisations
|
||||
|
||||
newtype Boolean table = B { unB :: table }
|
||||
deriving (Show, Ord, Eq, Generic, NominalType, Conditional, Contextual)
|
||||
|
||||
type BTable i = Boolean (Table i Bool)
|
||||
|
||||
instance (NominalType i) => ObservationTable (BTable i) i Bool where
|
||||
-- Special case of a boolean: functions to Booleans are subsets
|
||||
type Row (BTable i) = Set [i]
|
||||
rows = coerce (rows :: _ => Table i Bool -> _)
|
||||
cols = coerce (cols :: _ => Table i Bool -> _)
|
||||
rowsExt = coerce (rowsExt :: _ => Table i Bool -> _)
|
||||
colsExt = coerce (colsExt :: _ => Table i Bool -> _)
|
||||
alph = coerce (alph :: _ => Table i Bool -> _)
|
||||
tableAt = coerce (tableAt :: _ => Table i Bool -> _)
|
||||
--rows = rowIndices . unB
|
||||
--cols = colIndices . unB
|
||||
--alph = aa . unB
|
||||
--tableAt = tableAt . unB
|
||||
|
||||
-- TODO: slightly inefficient
|
||||
row (B Table{..}) r = let lang = mapFilter (\(i, o) -> maybeIf (fromBool o) i) content
|
||||
in filter (\a -> lang `contains` (r ++ a)) colIndices
|
||||
rowEps (B Table{..}) = mapFilter (\(i, o) -> maybeIf (fromBool o /\ i `member` colIndices) i) content
|
||||
|
||||
--addRows mq newRows = B . addRows mq newRows . unB
|
||||
addRows = coerce (addRows :: _ => _ -> _ -> Table i Bool -> Table i Bool)
|
||||
--addColumns mq newColumns = B . addColumns mq newColumns . unB
|
||||
addColumns = coerce (addColumns :: _ => _ -> _ -> Table i Bool -> Table i Bool)
|
||||
|
||||
type BRow i = Row (BTable i)
|
||||
|
||||
initialTableWith :: (NominalType i, NominalType o) => MQ i o -> Set i -> Set (RowIndex i) -> Set (ColumnIndex i) -> Table i o
|
||||
initialTableWith mq alphabet newRows newColumns = Table
|
||||
{ content = content
|
||||
, rows = newRows
|
||||
, columns = newColumns
|
||||
, alph = alphabet
|
||||
, rowIndices = newRows
|
||||
, colIndices = newColumns
|
||||
, aa = alphabet
|
||||
}
|
||||
where
|
||||
newColumnsExt = pairsWith (:) alphabet newColumns
|
||||
|
@ -79,26 +120,11 @@ initialTable mq alphabet = initialTableWith mq alphabet (singleton []) (singleto
|
|||
initialTableSize :: (NominalType i, NominalType o) => MQ i o -> Set i -> Int -> Int -> Table i o
|
||||
initialTableSize mq alphabet rs cs = initialTableWith mq alphabet (replicateSetUntil rs alphabet) (replicateSetUntil cs alphabet)
|
||||
|
||||
-- Assumption: newRows is disjoint from rows (for efficiency)
|
||||
addRows :: (NominalType i, NominalType o) => MQ i o -> Set (RowIndex i) -> Table i o -> Table i o
|
||||
addRows mq newRows t@Table{..} =
|
||||
t { content = content `union` newContent
|
||||
, rows = rows `union` newRows
|
||||
}
|
||||
where
|
||||
newRowsExt = pairsWith (\r a -> r ++ [a]) newRows alph
|
||||
newPart = pairsWith (++) (newRows `union` newRowsExt) columns
|
||||
newPartRed = newPart \\ dom content
|
||||
newContent = mq newPartRed
|
||||
initialBTableWith :: NominalType i => MQ i Bool -> Set i -> Set (RowIndex i) -> Set (ColumnIndex i) -> BTable i
|
||||
initialBTableWith = coerce initialTableWith
|
||||
|
||||
-- Assumption: newColumns is disjoint from columns (for efficiency)
|
||||
addColumns :: (NominalType i, NominalType o) => MQ i o -> Set (ColumnIndex i) -> Table i o -> Table i o
|
||||
addColumns mq newColumns t@Table{..} =
|
||||
t { content = content `union` newContent
|
||||
, columns = columns `union` newColumns
|
||||
}
|
||||
where
|
||||
newColumnsExt = pairsWith (:) alph newColumns
|
||||
newPart = pairsWith (++) rows (newColumns `union` newColumnsExt)
|
||||
newPartRed = newPart \\ dom content
|
||||
newContent = mq newPartRed
|
||||
initialBTable :: NominalType i => MQ i Bool -> Set i -> BTable i
|
||||
initialBTable = coerce initialTable
|
||||
|
||||
initialBTableSize :: NominalType i => MQ i Bool -> Set i -> Int -> Int -> BTable i
|
||||
initialBTableSize = coerce initialTableSize
|
||||
|
|
Loading…
Add table
Reference in a new issue