1
Fork 0
mirror of https://github.com/Jaxan/nominal-lstar.git synced 2025-04-27 06:37:45 +02:00
nominal-lstar/src/Teachers/Whitebox.hs
2020-11-17 12:21:46 +01:00

72 lines
4.2 KiB
Haskell

module Teachers.Whitebox where
import NLambda
import Prelude hiding (filter, map, not, sum)
-- Checks bisimulation of initial states (only for DFAs)
-- returns some counterexamples if not bisimilar
-- returns empty set iff bisimilar
bisim :: (NominalType i, NominalType q1, NominalType q2) => Automaton q1 i -> Automaton q2 i -> Set [i]
bisim aut1 aut2 = go empty (pairsWith addEmptyWord (initialStates aut1) (initialStates aut2))
where
go rel todo =
let -- if elements are already in R, we can skip them
todo2 = filter (\(_, x, y) -> (x, y) `notMember` rel) todo
-- split into correct pairs and wrong pairs
(cont, ces) = partition (\(_, x, y) -> (x `member` finalStates aut1) <==> (y `member` finalStates aut2)) todo2
aa = NLambda.alphabet aut1
-- the good pairs should make one step
dtodo = sum (pairsWith (\(w, x, y) a -> pairsWith (\x2 y2 -> (a:w, x2, y2)) (d aut1 a x) (d aut2 a y)) cont aa)
in -- if there are wrong pairs
ite (isNotEmpty ces)
-- then return counter examples
(map getRevWord ces)
-- else continue with good pairs
(ite (isEmpty dtodo) empty (go (rel `union` map stripWord cont) dtodo))
d aut a x = mapFilter (\(s, l, t) -> maybeIf (s `eq` x /\ l `eq` a) t) (delta aut)
stripWord (_, x, y) = (x, y)
getRevWord (w, _, _) = reverse w
addEmptyWord x y = ([], x, y)
-- Attempt at using a bisimlution up to to proof bisimulation between NFAs.
-- Inspired by the Hacking non-determinism paper. However, they only
-- consider finite sums (which is enough for finite sets, but not for
-- nominal sets). Here, I have to do a bit of trickery to get all sums.
-- I am not sure about correctness, but that is not really an issue for our
-- use-case. Note that deciding equivalence of NFAs is undecidable, so we
-- bound the bisimulation depth.
bisimNonDet :: (Show i, Show q1, Show q2, NominalType i, NominalType q1, NominalType q2) => Int -> Automaton q1 i -> Automaton q2 i -> Set [i]
bisimNonDet n aut1 aut2 = go empty (singleton ([], initialStates aut1, initialStates aut2))
where
go rel todo0 =
let -- if elements are too long, we ignore them
todo0b = filter (\(w,_,_) -> fromBool (length w <= n)) todo0
-- if elements are already in R, we can skip them
todo1 = filter (\(_, x, y) -> (x, y) `notMember` rel) todo0b
-- now we are going to do a up-to thingy
-- we look at all subsets x2 of x occuring in R (similarly for y)
xbar x = mapFilter (\(x2, _) -> maybeIf (x2 `isSubsetOf` x) x2) rel
ybar y = mapFilter (\(_, y2) -> maybeIf (y2 `isSubsetOf` y) y2) rel
-- and then the sums are expressed by these formulea kind of
xform x y = x `eq` sum (xbar x) /\ forAll (\x2 -> exists (\y2 -> rel `contains` (x2, y2)) (ybar y)) (xbar x)
yform x y = y `eq` sum (ybar y) /\ forAll (\y2 -> exists (\x2 -> rel `contains` (x2, y2)) (xbar x)) (ybar y)
notSums x y = not (xform x y /\ yform x y)
-- filter out things expressed as sums
todo2 = filter (\(_, x, y) -> notSums x y) todo1
-- split into correct pairs and wrong pairs
(cont, ces) = partition (\(_, x, y) -> (x `intersect` finalStates aut1) <==> (y `intersect` finalStates aut2)) todo2
aa = NLambda.alphabet aut1
-- the good pairs should make one step
dtodo = pairsWith (\(w, x, y) a -> (a:w, sumMap (d aut1 a) x, sumMap (d aut2 a) y)) cont aa
in -- if there are wrong pairs
ite (isNotEmpty ces)
-- then return counter examples
(map getRevWord ces)
-- else continue with good pairs
(ite (isEmpty dtodo) empty (go (rel `union` map stripWord cont) dtodo))
d aut a x = mapFilter (\(s, l, t) -> maybeIf (s `eq` x /\ l `eq` a) t) (delta aut)
stripWord (_, x, y) = (x, y)
getRevWord (w, _, _) = reverse w
sumMap f = sum . map f