mirror of
https://github.com/Jaxan/ons-hs.git
synced 2025-04-27 06:37:44 +02:00
Made LStarPerm slightly faster, but potentially wrong.
This commit is contained in:
parent
5f27219f12
commit
2e913bd666
5 changed files with 57 additions and 11 deletions
|
@ -1,6 +1,7 @@
|
|||
{-# LANGUAGE DerivingVia #-}
|
||||
{-# LANGUAGE FlexibleContexts #-}
|
||||
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
|
||||
{-# LANGUAGE ImportQualifiedPost #-}
|
||||
{-# LANGUAGE PartialTypeSignatures #-}
|
||||
{-# LANGUAGE RecordWildCards #-}
|
||||
{-# LANGUAGE StandaloneDeriving #-}
|
||||
|
@ -8,22 +9,39 @@
|
|||
{-# OPTIONS_GHC -Wno-partial-type-signatures #-}
|
||||
|
||||
import Automata (Word)
|
||||
import EquivariantMap (EquivariantMap(..), (!))
|
||||
import EquivariantMap qualified as Map
|
||||
import EquivariantSet qualified as Set
|
||||
import ExampleAutomata
|
||||
import IO
|
||||
import Quotient
|
||||
import OrbitList
|
||||
import EquivariantMap (EquivariantMap(..), (!))
|
||||
import qualified EquivariantMap as Map
|
||||
import qualified EquivariantSet as Set
|
||||
import Nominal (Nominal, Orbit, Trivially(..))
|
||||
import OrbitList
|
||||
import Permutable
|
||||
import Quotient
|
||||
|
||||
import Control.Monad.State
|
||||
import Data.List (tails)
|
||||
import Data.Maybe (catMaybes)
|
||||
import Control.Monad.State
|
||||
import System.IO (hFlush, stdout)
|
||||
import Prelude hiding (filter, null, elem, lookup, product, Word, map, take, init)
|
||||
import System.IO (hFlush, stdout)
|
||||
|
||||
-- This is like the LStar algorithm in LStar.hs, but it skips membership
|
||||
-- queries which are permutations of ones already asked. This saves a lot of
|
||||
-- queries, but is slower computationally. The permutations are nicely hidden
|
||||
-- away in the PermEquivariantMap data structure, so that the learning
|
||||
-- algorithm is almost identical to the one in LStar.hs.
|
||||
--
|
||||
-- Some of the performance is regained, by using another product (now still
|
||||
-- "testProduct"). I am not 100% sure this is the correct way of doing it.
|
||||
-- It seems to work on the examples I tried. And I do think that something
|
||||
-- along these lines potentially works.
|
||||
--
|
||||
-- Another way forway would be to use the `Permuted` monad, also in the
|
||||
-- automaton type. But that requires more thinking.
|
||||
|
||||
|
||||
--------------------------------------------
|
||||
-- New data structure to handle permutations
|
||||
newtype PermEquivariantMap k v = PEqMap { unPEqMap :: EquivariantMap k v }
|
||||
deriving Nominal via Trivially (EquivariantMap k v)
|
||||
|
||||
|
@ -44,6 +62,10 @@ insertP k v = PEqMap . Map.insert k v . unPEqMap
|
|||
Just v -> v
|
||||
Nothing -> error "Key not found (in PermEquivariantMap)"
|
||||
|
||||
|
||||
--------------------------------------------
|
||||
-- From here, it's almost exactly LStar.hs
|
||||
|
||||
-- We use Lists, as they provide a bit more laziness
|
||||
type Rows a = OrbitList (Word a)
|
||||
type Columns a = OrbitList (Word a)
|
||||
|
@ -57,7 +79,10 @@ ext p a = p <> [a]
|
|||
|
||||
equalRows :: _ => Word a -> Word a -> Columns a -> Table a -> Bool
|
||||
equalRows t0 s0 suffs table =
|
||||
forAll (\((t, s), e) -> lookupP (s ++ e) table == lookupP (t ++ e) table) $ product (singleOrbit (t0, s0)) suffs
|
||||
-- I am not convinced this is right: the permutations applied here should
|
||||
-- be the same I think. As it is currently stated the permutations to s and t
|
||||
-- may be different.
|
||||
forAll (\((t, s), e) -> lookupP (s ++ e) table == lookupP (t ++ e) table) $ testProduct (singleOrbit (t0, s0)) suffs
|
||||
|
||||
closed :: _ => Word a -> Rows a -> Columns a -> Table a -> Bool
|
||||
closed t prefs suffs table =
|
||||
|
@ -71,8 +96,8 @@ inconsistencies :: _ => Rows a -> Columns a -> Table a -> OrbitList a -> OrbitLi
|
|||
inconsistencies prefs suffs table alph =
|
||||
filter (\((s, t), (a, e)) -> lookupP (s ++ (a:e)) table /= lookupP (t ++ (a:e)) table) candidatesExt
|
||||
where
|
||||
candidates = filter (\(s, t) -> s < t && equalRows s t suffs table) (product prefs prefs)
|
||||
candidatesExt = product candidates (product alph suffs)
|
||||
candidates = filter (\(s, t) -> s < t && equalRows s t suffs table) (testProduct prefs prefs)
|
||||
candidatesExt = testProduct candidates (product alph suffs)
|
||||
|
||||
|
||||
-- Main state of the L* algorithm
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
cabal-version: 2.2
|
||||
name: ons-hs
|
||||
version: 0.3.0.0
|
||||
version: 0.3.1.0
|
||||
synopsis: Implementation of the ONS (Ordered Nominal Sets) library in Haskell
|
||||
description: Nominal sets are structured infinite sets. They have symmetries which make them finitely representable. This library provides basic manipulation of them for the total order symmetry. It includes: products, sums, maps and sets. Can work with custom data types.
|
||||
homepage: https://github.com/Jaxan/ons-hs
|
||||
|
|
|
@ -48,3 +48,7 @@ increasingProduct = productG incrSepProdStrings
|
|||
-- Strictly decreasing product = { (a,b) | all elements in a > elements in b }
|
||||
decreasingProduct :: (Nominal a, Nominal b) => Proxy a -> Proxy b -> Orbit a -> Orbit b -> [Orbit (a,b)]
|
||||
decreasingProduct = productG decrSepProdStrings
|
||||
|
||||
-- Strictly decreasing product = { (a,b) | all elements in a > elements in b }
|
||||
testProduct :: (Nominal a, Nominal b) => Proxy a -> Proxy b -> Orbit a -> Orbit b -> [Orbit (a,b)]
|
||||
testProduct = productG testProdStrings
|
||||
|
|
|
@ -56,6 +56,18 @@ decrSepProdStrings :: Alternative f => Int -> Int -> f [Ordering]
|
|||
decrSepProdStrings = memo2 gen where
|
||||
gen n m = pure $ replicate m GT <|> replicate n LT
|
||||
|
||||
testProdStrings :: Alternative f => Int -> Int -> f [Ordering]
|
||||
testProdStrings = mgen (0 :: Int) where
|
||||
mgen = memo3 gen
|
||||
gen _ n 0 = pure $ replicate n LT
|
||||
gen _ 0 n = pure $ replicate n GT
|
||||
gen 0 n m = (LT :) <$> mgen 1 (n-1) m
|
||||
<|> (EQ :) <$> mgen 0 (n-1) (m-1)
|
||||
gen k n m = (LT :) <$> mgen (k+1) (n-1) m
|
||||
<|> (EQ :) <$> mgen k (n-1) (m-1)
|
||||
<|> (GT :) <$> mgen (k-1) n (m-1)
|
||||
|
||||
|
||||
{- NOTE on performance:
|
||||
Previously, I had INLINABLE and SPECIALIZE pragmas for all above definitions.
|
||||
But with benchmarking, I concluded that they do not make any difference. So
|
||||
|
|
|
@ -126,6 +126,11 @@ increasingProduct = OrbitList.productG Nominal.increasingProduct
|
|||
decreasingProduct :: forall a b. (Nominal a, Nominal b) => OrbitList a -> OrbitList b -> OrbitList (a, b)
|
||||
decreasingProduct = OrbitList.productG Nominal.decreasingProduct
|
||||
|
||||
-- Not yet the product I wish to have... That is why the name is so
|
||||
-- non-informative.
|
||||
testProduct :: forall a b. (Nominal a, Nominal b) => OrbitList a -> OrbitList b -> OrbitList (a, b)
|
||||
testProduct = OrbitList.productG Nominal.testProduct
|
||||
|
||||
productWith :: (Nominal a, Nominal b, Nominal c) => (a -> b -> c) -> OrbitList a -> OrbitList b -> OrbitList c
|
||||
productWith f as bs = map (uncurry f) (OrbitList.product as bs)
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue